Dividing out quantification uncertainty allows efficient assessment of differential transcript expression with edgeR

被引:5
作者
Baldoni, Pedro L. [1 ,2 ]
Chen, Yunshun [2 ,3 ]
Hediyeh-zadeh, Soroor [1 ,2 ]
Liao, Yang [4 ,5 ]
Dong, Xueyi [2 ,3 ]
Ritchie, Matthew E. [2 ,6 ]
Shi, Wei [4 ,5 ]
Smyth, Gordon K. [1 ,7 ]
机构
[1] WEHI, Bioinformat Div, Parkville, Vic 3052, Australia
[2] Univ Melbourne, Dept Med Biol, Parkville, Vic 3010, Australia
[3] WEHI, ACRF Canc Biol & Stem Cells Div, Parkville, Vic 3052, Australia
[4] Olivia Newton John Canc Res Inst, Heidelberg, Vic 3084, Australia
[5] La Trobe Univ, Sch Canc Med, Melbourne, Vic 3086, Australia
[6] WEHI, Epigenet & Dev Div, Parkville, Vic 3052, Australia
[7] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
RNA-SEQ;
D O I
10.1093/nar/gkad1167
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Differential expression analysis of RNA-seq is one of the most commonly performed bioinformatics analyses. Transcript-level quantifications are inherently more uncertain than gene-level read counts because of ambiguous assignment of sequence reads to transcripts. While sequence reads can usually be assigned unambiguously to a gene, reads are very often compatible with multiple transcripts for that gene, particularly for genes with many isoforms. Software tools designed for gene-level differential expression do not perform optimally on transcript counts because the read-to-transcript ambiguity (RTA) disrupts the mean-variance relationship normally observed for gene level RNA-seq data and interferes with the efficiency of the empirical Bayes dispersion estimation procedures. The pseudoaligners kallisto and Salmon provide bootstrap samples from which quantification uncertainty can be assessed. We show that the overdispersion arising from RTA can be elegantly estimated by fitting a quasi-Poisson model to the bootstrap counts for each transcript. The technical overdispersion arising from RTA can then be divided out of the transcript counts, leading to scaled counts that can be input for analysis by established gene-level software tools with full statistical efficiency. Comprehensive simulations and test data show that an edgeR analysis of the scaled counts is more powerful and efficient than previous differential transcript expression pipelines while providing correct control of the false discovery rate. Simulations explore a wide range of scenarios including the effects of paired vs single-end reads, different read lengths and different numbers of replicates. Graphical Abstract
引用
收藏
页数:13
相关论文
共 36 条
[1]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[2]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[3]   Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016) [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :888-888
[4]  
Chen Yunshun, 2016, F1000Res, V5, P1438, DOI 10.12688/f1000research.8987.2
[5]   The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq [J].
Di, Yanming ;
Schafer, Daniel W. ;
Cumbie, Jason S. ;
Chang, Jeff H. .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
[6]   Benchmarking long-read RNA-sequencing analysis tools using in silico mixtures [J].
Dong, Xueyi ;
Du, Mei R. M. ;
Gouil, Quentin ;
Tian, Luyi ;
Jabbari, Jafar S. ;
Bowden, Rory ;
Baldoni, Pedro L. ;
Chen, Yunshun ;
Smyth, Gordon K. ;
Amarasinghe, Shanika L. ;
Law, Charity W. ;
Ritchie, Matthew E. .
NATURE METHODS, 2023, 20 (11) :1810-1821
[7]  
Evans E, 1972, Midwives Chron, V86, P118
[8]   Complex heatmaps reveal patterns and correlations in multidimensional genomic data [J].
Gu, Zuguang ;
Eils, Roland ;
Schlesner, Matthias .
BIOINFORMATICS, 2016, 32 (18) :2847-2849
[9]  
Huber W, 2015, NAT METHODS, V12, P115, DOI [10.1038/NMETH.3252, 10.1038/nmeth.3252]
[10]   Inactivation of EGLN3 hydroxylase facilitates Erk3 degradation via autophagy and impedes lung cancer growth [J].
Jin, Ying ;
Pan, Yamu ;
Zheng, Shuang ;
Liu, Yao ;
Xu, Jie ;
Peng, Yazhi ;
Zhang, Zemei ;
Wang, Yadong ;
Xiong, Yulian ;
Xu, Lei ;
Mu, Kaiyu ;
Chen, Suwen ;
Zheng, Fei ;
Yuan, Ye ;
Fu, Jian .
ONCOGENE, 2022, 41 (12) :1752-1766