Structural insight into the role of thiolase from Fusobacterium nucleatum

被引:1
|
作者
He, Shanru [1 ,2 ]
Bai, Xue [1 ,2 ]
Xu, Yongbin [1 ,2 ,3 ]
机构
[1] Dalian Minzu Univ, Coll Life Sci, Dept Bioengn, Dalian 116600, Liaoning, Peoples R China
[2] Dalian Minzu Univ, Coll Life Sci, Key Lab Biotechnol & Bioresources Utilizat, Minist Educ, Dalian, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, CAS Key Lab Separat Sci Analyt Chem, Dalian 116023, Liaoning, Peoples R China
关键词
Fusobacterium nucleatum; Thiolase; Fn0495; BIOSYNTHETIC THIOLASE;
D O I
10.1016/j.bbrc.2023.149151
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fusobacterium nucleatum (F. nucleatum) is an anaerobic gram-negative bacterium that was previously thought to be related to the progression of colorectal cancer. In F. nucleatum, thiolase participates in fatty acid metabolism, and it can catalyse the transfer of an acetyl group from acetyl-CoA to another molecule, typically a fatty acid or another molecule in the synthesis of lipids. To gain deeper insight into the molecular mechanism governing the function of thiolase in F. nucleatum (Fn0495), we herein report the structure of Fn0495. The monomer of Fn0495 consists of three subdomains, namely, the N-terminal domain (residues 1-117 and 252-270), the C-terminal domain (residues 273-393), and the loop domain (residues 118-251). Fn0495 shows a unique difference in the charge and structure of the substrate binding pocket compared with homologous proteins. This research found three conserved residues (Cys88, His357, and Cys387) in Fn0495 arranged near a potential substrate binding pocket. In this study, the conformational changes between the covering loop, catalytic cysteine loop, regulatory determinant region, and homologous protein were compared. These results will enhance our understanding of the molecular characteristics and roles of the thiolase family.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Fusobacterium nucleatum: Unraveling its potential role in gastric carcinogenesis
    Petkevicius, Vytenis
    Lehr, Konrad
    Kupcinskas, Juozas
    Link, Alexander
    WORLD JOURNAL OF GASTROENTEROLOGY, 2024, 30 (35)
  • [22] Role of Fusobacterium nucleatum in anaerobe survival in microbial communities.
    Marsh, PD
    Bradshaw, DJ
    Watson, GK
    Allison, C
    JOURNAL OF DENTAL RESEARCH, 1997, 76 : 1700 - 1700
  • [23] The Role of Fusobacterium nucleatum in Colorectal Cancer Cell Proliferation and Migration
    Wu, Zihong
    Ma, Qiong
    Guo, Ying
    You, Fengming
    CANCERS, 2022, 14 (21)
  • [24] Fusobacterium nucleatum and colorectal cancer: From phenomenon to mechanism
    Ou, Suwen
    Wang, Hufei
    Tao, Yangbao
    Luo, Kangjia
    Ye, Jinhua
    Ran, Songlin
    Guan, Zilong
    Wang, Yuliuming
    Hu, Hanqing
    Huang, Rui
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 12
  • [25] FUSOBACTERIUM-NUCLEATUM PYOMYOSITIS
    BEAVERS, BR
    ORTHOPEDICS, 1992, 15 (02) : 208 - 211
  • [26] Autoaggregation Response of Fusobacterium nucleatum
    Merritt, Justin
    Niu, Guoqing
    Okinaga, Toshinori
    Qi, Felicia
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (24) : 7725 - 7733
  • [27] SELECTIVE MEDIUM FOR FUSOBACTERIUM NUCLEATUM
    MANDELL, R
    WALKER, CB
    SOCRANSKY, SS
    JOURNAL OF DENTAL RESEARCH, 1979, 58 : 108 - 108
  • [28] Expression of lactate dehydrogenase gene from Fusobacterium nucleatum
    Sariyer, E.
    Erdemir, A.
    Milward, M. R.
    Cooper, P. R.
    Ozkan, E.
    Turgut-Balik, D.
    FEBS JOURNAL, 2013, 280 : 617 - 617
  • [29] Structural and biochemical analyses of the tetrameric carboxypeptidase S9Cfn from Fusobacterium nucleatum
    Wang, Xin
    Cheng, Meng Ting
    Chen, Zhi Peng
    Jiang, Yong Liang
    Ge, Yu Shu
    Xia, Rong
    Hou, Wen Tao
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2021, 77 : 1554 - 1563
  • [30] The lipopolysaccharide isolated from Fusobacterium nucleatum ATCC 51191
    Garcia-Vello, Pilar
    Lamprinaki, Dimitra
    Di Lorenzo, Flaviana
    Molinaro, Antonio
    Juge, Nathalie
    De Castro, Cristina
    GLYCOBIOLOGY, 2020, 30 (12) : 1054 - 1055