Identification of gene expression biomarkers to predict clinical response to methotrexate in patients with rheumatoid arthritis

被引:4
作者
Palmowski, Andriko [1 ,2 ,3 ,4 ]
Strehl, Cindy [1 ,2 ,3 ,5 ]
Pfeiffenberger, Moritz [1 ,2 ,3 ]
Haeupl, Thomas [1 ,2 ,3 ,5 ]
Schad, Martina [6 ]
Kallarackal, Jim [6 ]
Prothmann, Ulrich [7 ]
Dammann, Denise [1 ,2 ,3 ,5 ]
Bonin, Mark [1 ,2 ,3 ,5 ]
Brandt, Andreas [8 ]
Schneider, Udo [1 ,2 ,3 ]
Gaber, Timo [1 ,2 ,3 ,5 ]
Buttgereit, Frank [1 ,2 ,3 ,5 ]
机构
[1] Charite Univ Med Berlin, Dept Rheumatol & Clin Immunol, D-10117 Berlin, Germany
[2] Free Univ Berlin, D-10117 Berlin, Germany
[3] Humboldt Univ, D-10117 Berlin, Germany
[4] Bispebjerg & Frederiksberg Hosp, Parker Inst, Sect Biostat & Evidence Based Res, Copenhagen, Denmark
[5] German Rheumatism Res Ctr DRFZ Berlin, Inst Leibniz Assoc, D-10117 Berlin, Germany
[6] OakLabs Bio Inc, Raleigh, NC USA
[7] Knappschaftsklin Saar, Klin Puttlingen, Puttlingen, Germany
[8] Medac Gesell Klin Spezialpraparate mbH, Wedel, Germany
关键词
Rheumatoid arthritis; Methotrexate; Response; Prediction; Biomarkers; Gene signature; Pharmacogenomics; COLLEGE-OF-RHEUMATOLOGY; AMERICAN-COLLEGE; MONOTHERAPY; CRITERIA; LEAGUE;
D O I
10.1007/s10067-023-06814-2
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectivesTo identify biomarkers at the gene expression level to predict response to methotrexate (MTX) in patients with rheumatoid arthritis (RA).MethodsMTX-naive patients with RA were started on MTX and followed up over three months. The disease activity score 28 (DAS28) was used to classify patients into responders and non-responders. Genome-wide gene expression analysis was performed in CD4 + and CD14 + mononuclear cells sampled from whole blood at baseline to identify differentially expressed genes in responders versus non-responders. Gene selection methods and prediction modelling obtained the most relevant differentially expressed genes. A logistic regression prediction model was subsequently constructed and validated via bootstrapping. The area under the receiver operating characteristic (AUC) curve was calculated to judge model quality.ResultsSeventy-nine patients with RA (53.4 +/- 13.9 years, 74.7% females) were enrolled, and 70 finished the study with a documented treatment EULAR response (77.1% responders). Forty-six differentially expressed genes were found. The most promising genes were KRTAP4-11, LOC101927584, and PECAM1 in CD4 + cells and PSMD5 and ID1 in CD14 + cells. The final prediction model using these genes reached an AUC of 90%; the validation set's AUC was 82%.ConclusionsOur prediction model constructed via genome-wide gene expression analysis in CD4 + and CD14 + mononuclear cells yielded excellent predictions. Our findings necessitate confirmation in other cohorts of MTX-naive RA patients. Especially if used in conjunction with previously identified clinical and laboratory (bio)markers, our results could help predict response to MTX in RA to guide treatment decisions.Key Points center dot Patients with rheumatoid arthritis may or may not respond to treatment with methotrexate, which is the recommended first-line drug in guidelines around the world.center dot In non-responders, valuable time is lost until second-line treatments are started.center dot This study aimed at predicting response to methotrexate by identifying differentially expressed genes from peripheral blood samples.center dot The final prediction model yielded excellent prognostic values, but validation in other cohorts is necessary to corroborate these findings.ConclusionsOur prediction model constructed via genome-wide gene expression analysis in CD4 + and CD14 + mononuclear cells yielded excellent predictions. Our findings necessitate confirmation in other cohorts of MTX-naive RA patients. Especially if used in conjunction with previously identified clinical and laboratory (bio)markers, our results could help predict response to MTX in RA to guide treatment decisions.Key Points center dot Patients with rheumatoid arthritis may or may not respond to treatment with methotrexate, which is the recommended first-line drug in guidelines around the world.center dot In non-responders, valuable time is lost until second-line treatments are started.center dot This study aimed at predicting response to methotrexate by identifying differentially expressed genes from peripheral blood samples.center dot The final prediction model yielded excellent prognostic values, but validation in other cohorts is necessary to corroborate these findings.
引用
收藏
页码:435 / 441
页数:7
相关论文
共 18 条
[1]   The number of circulating monocytes as biomarkers of the clinical response to methotrexate in untreated patients with rheumatoid arthritis [J].
Chara, Luis ;
Sanchez-Atrio, Ana ;
Perez, Ana ;
Cuende, Eduardo ;
Albarran, Fernando ;
Turrion, Ana ;
Chevarria, Julio ;
del Barco, Angel Asunsolo ;
Sanchez, Miguel A. ;
Monserrat, Jorge ;
Prieto, Alfredo ;
de la Hera, Antonio ;
Sanz, Ignacio ;
Diaz, David ;
Alvarez-Mon, Melchor .
JOURNAL OF TRANSLATIONAL MEDICINE, 2015, 13
[2]  
Deutsches Rheumaforschungszentrum, 2019, DATEN KERNDOKUMENTAT
[3]   Validation of a clinical pharmacogenetic model to predict methotrexate nonresponse in rheumatoid arthritis patients [J].
Eektimmerman, Frank ;
Allaart, Cornelia F. ;
Hazes, Johanna M. W. ;
den Broeder, Alfons A. ;
Fransen, Jaap ;
Swen, Jesse J. ;
Guchelaar, Henk-Jan .
PHARMACOGENOMICS, 2019, 20 (02) :85-93
[4]   2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis [J].
Fraenkel, Liana ;
Bathon, Joan M. ;
England, Bryant R. ;
St Clair, E. William ;
Arayssi, Thurayya ;
Carandang, Kristine ;
Deane, Kevin D. ;
Genovese, Mark ;
Huston, Kent Kwas ;
Kerr, Gail ;
Kremer, Joel ;
Nakamura, Mary C. ;
Russell, Linda A. ;
Singh, Jasvinder A. ;
Smith, Benjamin J. ;
Sparks, Jeffrey A. ;
Venkatachalam, Shilpa ;
Weinblatt, Michael E. ;
Al-Gibbawi, Mounir ;
Baker, Joshua F. ;
Barbour, Kamil E. ;
Barton, Jennifer L. ;
Cappelli, Laura ;
Chamseddine, Fatimah ;
George, Michael ;
Johnson, Sindhu R. ;
Kahale, Lara ;
Karam, Basil S. ;
Khamis, Assem M. ;
Navarro-Millan, Iris ;
Mirza, Reza ;
Schwab, Pascale ;
Singh, Namrata ;
Turgunbaev, Marat ;
Turner, Amy S. ;
Yaacoub, Sally ;
Akl, Elie A. .
ARTHRITIS CARE & RESEARCH, 2021, 73 (07) :924-939
[5]   Serum Biomarkers for Prediction of Response to Methotrexate Monotherapy in Early Rheumatoid Arthritis: Results from the SWEFOT Trial [J].
Hambardzumyan, Karen ;
Bolce, Rebecca J. ;
Wallman, Johan K. ;
van Vollenhoven, Ronald F. ;
Saevarsdottir, Saedis .
JOURNAL OF RHEUMATOLOGY, 2019, 46 (06) :555-563
[6]  
KAPLAN JE, 1990, J ACQ IMMUN DEF SYND, V3, P1096
[7]   Prediction of Methotrexate Clinical Response in Portuguese Rheumatoid Arthritis Patients: Implication of MTHFR rs1801133 and ATIC rs4673993 Polymorphisms [J].
Lima, Aurea ;
Monteiro, Joaquim ;
Bernardes, Miguel ;
Sousa, Hugo ;
Azevedo, Rita ;
Seabra, Vitor ;
Medeiros, Rui .
BIOMED RESEARCH INTERNATIONAL, 2014, 2014
[8]   Toward Individualized Prediction of Response to Methotrexate in Early Rheumatoid Arthritis: A Pharmacogenomics-Driven Machine Learning Approach [J].
Myasoedova, Elena ;
Athreya, Arjun P. ;
Crowson, Cynthia S. ;
Davis, John M. ;
Warrington, Kenneth J. ;
Walchak, Robert C. ;
Carlson, Erin ;
Kalari, Krishna R. ;
Bongartz, Tim ;
Tak, Paul P. ;
van Vollenhoven, Ronald F. ;
Padyukov, Leonid ;
Emery, Paul ;
Morgan, Ann ;
Wang, Liewei ;
Weinshilboum, Richard M. ;
Matteson, Eric L. .
ARTHRITIS CARE & RESEARCH, 2022, 74 (06) :879-888
[9]   Old drugs, old problems: where do we stand in prediction of rheumatoid arthritis responsiveness to methotrexate and other synthetic DMARDs? [J].
Romao, Vasco Crispim ;
Canhao, Helena ;
Fonseca, Joao Eurico .
BMC MEDICINE, 2013, 11
[10]   Rheumatoid Arthritis: Ultrasound Versus MRI [J].
Rowbotham, Emma L. ;
Grainger, Andrew J. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2011, 197 (03) :541-546