DECOUPLED INSTANCES DISTILLATION FOR REMOTE SENSING OBJECT DETECTION

被引:1
作者
Gao, Xiangyi
Zhao, Danpei [1 ]
Chen, Ziqiang
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
remote sensing object detection; knowledge distillation; instance decoupling;
D O I
10.1109/IGARSS52108.2023.10282277
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
As a significant field in object detection, knowledge distillation is plagued by coarse pixel division and complex object form. Although some methods currently use ground truth boxes for pixel division, they ignore consideration of teacher knowledge, resulting in inferior or even erroneous knowledge not being distinguished. In this paper, we propose a distillation method named Decoupled Instances Distillation, which solves the problem of imprecise pixel division and complex forms of remote sensing objects. First, we use the predicted boxes of the teacher network to distinguish different object instances and discard instances containing wrong knowledge. Second, considering the performance of classification and regression, we design the concentration function to differentiate object instances. Experimental results show that our method is powerful on remote sensing image datasets. Decoupled Instances Distillation improves the performance of YOLOv3 by 3.1% mAP on the DIOR test set, outperforming existing methods.
引用
收藏
页码:6486 / 6489
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 2019, P IEEE CVF C COMP VI, DOI DOI 10.1109/CAC48633.2019.8997495
[2]   Distilling Object Detectors via Decoupled Features [J].
Guo, Jianyuan ;
Han, Kai ;
Wang, Yunhe ;
Wu, Han ;
Chen, Xinghao ;
Xu, Chunjing ;
Xu, Chang .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2154-2164
[3]  
Hinton G., 2015, arXiv preprint arXiv:1503.02531
[4]   Object detection in optical remote sensing images: A survey and a new benchmark [J].
Li, Ke ;
Wan, Gang ;
Cheng, Gong ;
Meng, Liqiu ;
Han, Junwei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 159 :296-307
[5]  
Redmon J, 2018, Arxiv, DOI [arXiv:1804.02767, 10.48550/arXiv.1804.02767]
[6]  
Sun Ruoyu, 2020, ARXIV200613108
[7]  
Xu D, 2017, IEEE INT CONF COMMUN, P356
[8]   Focal and Global Knowledge Distillation for Detectors [J].
Yang, Zhendong ;
Li, Zhe ;
Jiang, Xiaohu ;
Gong, Yuan ;
Yuan, Zehuan ;
Zhao, Danpei ;
Yuan, Chun .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :4633-4642
[9]  
Zhang Linjun, 2021, INT C LEARN REPR
[10]  
Zhao Borui, 2022, PROC CVPR IEEE, P11953, DOI [DOI 10.1109/CVPR52688.2022.01165, 10.1109/cvpr52688.2022.01165]