Breast cancer prediction using supervised machine learning techniques

被引:0
|
作者
Dadheech, Pankaj [1 ]
Kalmani, Vijay [2 ]
Dogiwal, Sanwta Ram [3 ]
Sharma, Vijay Kumar [4 ]
Kumar, Ankit [5 ]
Pandey, Saroj Kumar [5 ]
机构
[1] Swami Keshvanand Inst Technol Management & Gramot, Dept Comp Sci & Engn, Jaipur, Rajasthan, India
[2] Jain Coll Engn, Dept Comp Sci & Engn, Belgaum, Karnataka, India
[3] Swami Keshvanand Inst Technol Management & Gramot, Dept Informat Technol, Jaipur, Rajasthan, India
[4] Manipal Univ Jaipur, Dept Comp & Commun Engn, Jaipur, Rajasthan, India
[5] GLA Univ, Dept Comp Engn & Applicat, Mathura, Uttar Pradesh, India
关键词
Breast cancer prediction; Logistic regression; Supervised machine learning; Support vector machine;
D O I
10.47974/JIOS-1348
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Breast cancer is one of the most prevalent diseases in India's urban regions and the second most common in the country's rural parts. In India, a woman is diagnosed with breast cancer growth every four minutes, and a woman dies from breast cancer sickness every thirteen minutes. Over half of breast cancer patients in India are diagnosed with stage 3 or 4 illness, which has extremely low survival rates; hence, an urgent need exists for a rapid detection strategy. To forecast if a patient is at risk for breast cancer, we utilise the classification techniques of machine learning, in which the machine learning model learns from the previous information and can anticipate on the new information that is generated by the data. To create a model using Logistic Regression, Support Vector Machines, and Random Forests, this dataset was collected from the UCI repository and studied in this study. The primary goal is to improve the accuracy, precision, and sensitivity of all the algorithms that are used to categorise data in terms of the competency and viability of each and every algorithm. Random Forest has been shown to be the most accurate in classifying breast cancer, with a precision of 98.60 percent in tests. The Scientific Python Development Environment is used to carry out this machine learning study, which is written in the python programming language.
引用
收藏
页码:383 / 392
页数:10
相关论文
共 50 条
  • [41] ALGORITHM SELECTION AND IMPORTANCE OF MACHINE LEARNING IN PREDICTION OF BREAST CANCER
    Babu, B. Sankara
    Bethu, Srikanth
    Rao, P. S. V. Srinivasa
    Sowmya, V
    JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES, 2019, 14 (06): : 283 - 315
  • [42] An Effective Disease Prediction Algorithms Using Machine Learning Techniques
    Sirivanth, Paladugu
    Rao, N. V. Krishna
    Manduva, Jenvith
    Thirupathi, J.
    Kavya, S. P., V
    Tejaswini, M.
    Sruthi, K. Sai
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 502 - 507
  • [43] Solar Radiation Prediction Using Machine Learning Techniques: A Review
    Obando, E.
    Carvajal, S.
    Pineda, J.
    IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (04) : 684 - 697
  • [44] Risk Prediction of Diabetic Disease Using Machine Learning Techniques
    Tamanna
    Kumari, Ritika
    Bansal, Poonam
    Dev, Amita
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024, 2024, 945 : 197 - 209
  • [45] Prediction of electrical power disturbances using machine learning techniques
    Omran, Shaimaa
    El Houby, Enas M. F.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (07) : 2987 - 3003
  • [46] Prediction of Breast Cancer Using Ensemble Learning
    Jayed, Tasfin
    Hasan, Md Al Mehedi
    Masrur, Tahsin
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL ENGINEERING (ICAEE), 2019, : 809 - 814
  • [47] Diabetes prediction using machine learning and explainable AI techniques
    Tasin, Isfafuzzaman
    Nabil, Tansin Ullah
    Islam, Sanjida
    Khan, Riasat
    HEALTHCARE TECHNOLOGY LETTERS, 2023, 10 (1-2) : 1 - 10
  • [48] Software Defect Prediction Analysis Using Machine Learning Techniques
    Khalid, Aimen
    Badshah, Gran
    Ayub, Nasir
    Shiraz, Muhammad
    Ghouse, Mohamed
    SUSTAINABILITY, 2023, 15 (06)
  • [49] Chronic Kidney Disease Prediction Using Machine Learning Techniques
    Saurabh Pal
    Biomedical Materials & Devices, 2023, 1 (1): : 534 - 540
  • [50] Sentiment Analysis of Sindhi Tweets Dataset using Supervised Machine Learning Techniques
    Hammad, Muhammad
    Anwar, Haris
    2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 108 - 113