Breast cancer prediction using supervised machine learning techniques

被引:0
|
作者
Dadheech, Pankaj [1 ]
Kalmani, Vijay [2 ]
Dogiwal, Sanwta Ram [3 ]
Sharma, Vijay Kumar [4 ]
Kumar, Ankit [5 ]
Pandey, Saroj Kumar [5 ]
机构
[1] Swami Keshvanand Inst Technol Management & Gramot, Dept Comp Sci & Engn, Jaipur, Rajasthan, India
[2] Jain Coll Engn, Dept Comp Sci & Engn, Belgaum, Karnataka, India
[3] Swami Keshvanand Inst Technol Management & Gramot, Dept Informat Technol, Jaipur, Rajasthan, India
[4] Manipal Univ Jaipur, Dept Comp & Commun Engn, Jaipur, Rajasthan, India
[5] GLA Univ, Dept Comp Engn & Applicat, Mathura, Uttar Pradesh, India
关键词
Breast cancer prediction; Logistic regression; Supervised machine learning; Support vector machine;
D O I
10.47974/JIOS-1348
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
Breast cancer is one of the most prevalent diseases in India's urban regions and the second most common in the country's rural parts. In India, a woman is diagnosed with breast cancer growth every four minutes, and a woman dies from breast cancer sickness every thirteen minutes. Over half of breast cancer patients in India are diagnosed with stage 3 or 4 illness, which has extremely low survival rates; hence, an urgent need exists for a rapid detection strategy. To forecast if a patient is at risk for breast cancer, we utilise the classification techniques of machine learning, in which the machine learning model learns from the previous information and can anticipate on the new information that is generated by the data. To create a model using Logistic Regression, Support Vector Machines, and Random Forests, this dataset was collected from the UCI repository and studied in this study. The primary goal is to improve the accuracy, precision, and sensitivity of all the algorithms that are used to categorise data in terms of the competency and viability of each and every algorithm. Random Forest has been shown to be the most accurate in classifying breast cancer, with a precision of 98.60 percent in tests. The Scientific Python Development Environment is used to carry out this machine learning study, which is written in the python programming language.
引用
收藏
页码:383 / 392
页数:10
相关论文
共 50 条
  • [31] Research on internet traffic classification techniques using supervised machine learning
    Information Networking Institute, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
    不详
    High Technol Letters, 2009, 4 (369-377): : 369 - 377
  • [32] Stock Market Prediction Using Machine Learning Techniques
    Usmani, Mehak
    Adil, Syed Hasan
    Raza, Kaman
    Ali, Syed Saad Azhar
    2016 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2016, : 322 - 327
  • [33] A Survey on Android Malware Detection Techniques Using Supervised Machine Learning
    Altaha, Safa J.
    Aljughaiman, Ahmed
    Gul, Sonia
    IEEE ACCESS, 2024, 12 : 173168 - 173191
  • [34] Improving orbit prediction accuracy through supervised machine learning
    Peng, Hao
    Bai, Xiaoli
    ADVANCES IN SPACE RESEARCH, 2018, 61 (10) : 2628 - 2646
  • [35] Applications of Machine Learning Techniques to Predict Diagnostic Breast Cancer
    Chaurasia V.
    Pal S.
    SN Computer Science, 2020, 1 (5)
  • [36] Breast cancer prediction using an optimal machine learning technique for next generation sequences
    Kurian, Babymol
    Jyothi, V. L.
    CONCURRENT ENGINEERING-RESEARCH AND APPLICATIONS, 2021, 29 (01): : 49 - 57
  • [37] Machine learning techniques in breast cancer preventive diagnosis: a review
    Anastasi, Giada
    Franchini, Michela
    Pieroni, Stefania
    Buzzi, Marina
    Buzzi, Maria Claudia
    Leporini, Barbara
    Molinaro, Sabrina
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 82805 - 82848
  • [38] Predicting the sentiment of SaaS online reviews using supervised machine learning techniques
    Alkalbani, Asma Musabah
    Ghamry, Ahmed Mohamed
    Hussain, Farookh Khadeer
    Hussain, Omar Khadeer
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1547 - 1553
  • [39] Breast Cancer Prediction Based on Multiple Machine Learning Algorithms
    Zhou, Sheng
    Hu, Chujiao
    Wei, Shanshan
    Yan, Xiaofan
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2024, 23
  • [40] Mortality Prediction using Machine Learning Techniques: Comparative Analysis
    Verma, Akash
    Goyal, Shreya
    Thakur, Shridhar Kumar
    Gupta, Archit
    Gupta, Indrajeet
    PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 230 - 234