Incidental vertebral fracture prediction using neuronal network-based automatic spine segmentation and volumetric bone mineral density extraction from routine clinical CT scans

被引:3
作者
Bodden, Jannis [1 ]
Dieckmeyer, Michael [1 ,2 ]
Sollmann, Nico [1 ,3 ,4 ]
Burian, Egon [5 ]
Ruehling, Sebastian [1 ]
Loeffler, Maximilian T. [1 ,6 ]
Sekuboyina, Anjany [1 ,7 ,8 ]
El Husseini, Malek [1 ,7 ]
Zimmer, Claus [1 ,3 ]
Kirschke, Jan S. [1 ,3 ]
Baum, Thomas [1 ]
机构
[1] Tech Univ Munich, Sch Med, Dept Diagnost & Intervent Neuroradiol, Klinikum rechts Isar, Munich, Germany
[2] Univ Bern, Dept Diagnost & Intervent Neuroradiol, Bern, Switzerland
[3] Tech Univ Munich, TUM Neuroimaging Ctr, Klinikum rechts Isar, Munich, Germany
[4] Univ Hosp Ulm, Dept Diagnost & Intervent Radiol, Ulm, Germany
[5] Tech Univ Munich, Sch Med, Dept Diagnost & Intervent Radiol, Klinikum rechts Isar, Munich, Germany
[6] Univ Med Ctr Freiburg, Dept Diagnost & Intervent Radiol, Freiburg, Germany
[7] Tech Univ Munich, Dept Informat, Munich, Germany
[8] Tech Univ Munich, Munich Sch Bioengn, Munich, Germany
关键词
osteoporosis; osteoporotic fractures; bone density; tomography; x-ray computed; artificial intelligence; QUANTITATIVE COMPUTED-TOMOGRAPHY; X-RAY ABSORPTIOMETRY; OSTEOPOROSIS; PREVALENT; RISK; WOMEN;
D O I
10.3389/fendo.2023.1207949
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectivesTo investigate vertebral osteoporotic fracture (VF) prediction by automatically extracted trabecular volumetric bone mineral density (vBMD) from routine CT, and to compare the model with fracture prevalence-based prediction models. MethodsThis single-center retrospective study included patients who underwent two thoraco-abdominal CT scans during clinical routine with an average inter-scan interval of 21.7 & PLUSMN; 13.1 months (range 5-52 months). Automatic spine segmentation and vBMD extraction was performed by a convolutional neural network framework (anduin.bonescreen.de). Mean vBMD was calculated for levels T5-8, T9-12, and L1-5. VFs were identified by an expert in spine imaging. Odds ratios (ORs) for prevalent and incident VFs were calculated for vBMD (per standard deviation decrease) at each level, for baseline VF prevalence (yes/no), and for baseline VF count (n) using logistic regression models, adjusted for age and sex. Models were compared using Akaike's and Bayesian information criteria (AIC & BIC). Results420 patients (mean age, 63 years & PLUSMN; 9, 276 males) were included in this study. 40 (25 female) had prevalent and 24 (13 female) had incident VFs. Individuals with lower vBMD at any spine level had higher odds for VFs (L1-5, prevalent VF: OR,95%-CI,p: 2.2, 1.4-3.5,p=0.001; incident VF: 3.5, 1.8-6.9,p<0.001). In contrast, VF status (2.15, 0.72-6.43,p=0.170) and count (1.38, 0.89-2.12,p=0.147) performed worse in incident VF prediction. Information criteria revealed best fit for vBMD-based models (AIC vBMD=165.2; VF status=181.0; count=180.7). ConclusionsVF prediction based on automatically extracted vBMD from routine clinical MDCT outperforms prediction models based on VF status and count. These findings underline the importance of opportunistic quantitative osteoporosis screening in clinical routine MDCT data.
引用
收藏
页数:9
相关论文
共 43 条
[1]  
Akaike H., 1998, International Symposium on Information Theory, Budapest, Proceedings, P199, DOI DOI 10.1007/978-1-4612-1694-015
[2]   Prediction of incident vertebral fracture using CT-based finite element analysis [J].
Allaire, B. T. ;
Lu, D. ;
Johannesdottir, F. ;
Kopperdahl, D. ;
Keaveny, T. M. ;
Jarraya, M. ;
Guermazi, A. ;
Bredella, M. A. ;
Samelson, E. J. ;
Kiel, D. P. ;
Anderson, D. E. ;
Demissie, S. ;
Bouxsein, M. L. .
OSTEOPOROSIS INTERNATIONAL, 2019, 30 (02) :323-331
[3]  
[Anonymous], 2014, WILEY STATSREF STAT
[4]  
[Anonymous], 2018, Pharmaceutical spending (indicator), DOI DOI 10.1787/998FEBF6-EN
[5]  
[Anonymous], 2004, Bone Health and Osteoporosis: A Report of the Surgeon General
[6]   Discriminative ability of dual-energy X-ray absorptiometry site selection in identifying patients with osteoporotic fractures [J].
Arabi, Asma ;
Baddoura, Rafic ;
Awada, Hassane ;
Khoury, Nabil ;
Haddad, Souha ;
Ayoub, Ghazi ;
El-Hajj Fuleihan, Ghada .
BONE, 2007, 40 (04) :1060-1065
[7]   Detection of osteoporotic vertebral fractures using multidetector CT [J].
Bauer, JS ;
Müller, D ;
Ambekar, A ;
Dobritz, M ;
Matsuura, M ;
Eckstein, F ;
Rummeny, EJ ;
Link, TM .
OSTEOPOROSIS INTERNATIONAL, 2006, 17 (04) :608-615
[8]   Helical Multidetector Row Quantitative Computed Tomography (QCT) Precision [J].
Bligh, Michael ;
Bidaut, Luc ;
White, R. Allen ;
Murphy, William A., Jr. ;
Stevens, Donna M. ;
Cody, Dianna D. .
ACADEMIC RADIOLOGY, 2009, 16 (02) :150-159
[9]   Identification of non-Hodgkin lymphoma patients at risk for treatment-related vertebral density loss and fractures [J].
Bodden, J. ;
Sun, D. ;
Joseph, G. B. ;
Huang, L. -W. ;
Andreadis, C. ;
Hughes-Fulford, M. ;
Lang, T. F. ;
Link, T. M. .
OSTEOPOROSIS INTERNATIONAL, 2021, 32 (02) :281-291
[10]   Osteoporosis, an underdiagnosed disease [J].
Chesnut, CH .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2001, 286 (22) :2865-2866