On Extremal Sombor Indices of Chemical Graphs, and Beyond

被引:6
作者
Liu, Hechao [1 ]
You, Lihua [1 ]
Huang, Yufei [2 ]
Tang, Zikai [3 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Guangzhou Civil Aviat Coll, Dept Math Teaching, Guangzhou 510403, Peoples R China
[3] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Peoples R China
基金
中国国家自然科学基金;
关键词
ADJACENT VERTEX DEGREES; TOPOLOGICAL INDEXES; TREES;
D O I
10.46793/match.89-2.415L
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For a (chemical) graph G with vertex set V-G and edge set E-G, the Sombor index is defined as SO(G) = Sigma(uv is an element of EG) root d(2)(u) + d(2)(v), where d(u) denotes the degree of vertex u in G. In this paper, we determine the second and third minimum (resp. maximum) Sombor index of catacondensed hexagonal systems and phenylenes, the second minimum Sombor index of cata-catacondensed fluoranthene-type benzenoid systems. We also determine the minimum (resp. maximum) Sombor index of caterpillar trees with given degree sequence. At last, the first three maximum and the minimum Sombor index of star-like trees are determined.
引用
收藏
页码:415 / 436
页数:22
相关论文
共 27 条
  • [1] Alsinai A., 2021, J PRIME RES MATH, V17, P123
  • [2] Vertex-degree-based topological indices over starlike trees
    Betancur, Clara
    Cruz, Roberto
    Rada, Juan
    [J]. DISCRETE APPLIED MATHEMATICS, 2015, 185 : 18 - 25
  • [3] Bondy J. A., 2008, GRAPH THEORY
  • [4] Extremal Values on the Sombor Index of Trees
    Chen, Hanlin
    Li, Wenhao
    Wang, Jing
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 87 (01) : 23 - 49
  • [5] Sombor index of trees with at most three branch vertices
    Cruz, Roberto
    Rada, Juan
    Sigarreta, Jose M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 409
  • [6] Sombor index of chemical graphs
    Cruz, Roberto
    Gutman, Ivan
    Rada, Juan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 399
  • [7] Molecular trees with extremal values of Sombor indices
    Deng, Hanyuan
    Tang, Zikai
    Wu, Renfang
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (11)
  • [8] Ding J., 2011, RANDIC INDEX CATA CA
  • [9] Gutman I., 2022, Open J. Discrete Appl. Math, V5, P1, DOI DOI 10.30538/ODAM
  • [10] Gutman I., 1989, Introduction to the Theory of Benzenoid Hydrocarbons, DOI [10.1007/978-3-642-87143-6, DOI 10.1007/978-3-642-87143-6, DOI 10.1007/978-3-642-87143-6_5]