On a New Norm on the Space of Reproducing Kernel Hilbert Space Operators and Berezin Radius Inequalities

被引:20
作者
Bhunia, P. [1 ]
Gurdal, M. [2 ]
Paul, K. [3 ]
Sen, A. [3 ]
Tapdigoglu, R. [4 ,5 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru, Karnataka, India
[2] Suleyman Demirel Univ, Dept Math, Isparta, Turkiye
[3] Jadavpur Univ, Dept Math, Kolkata, West Bengal, India
[4] Azerbaijan State Univ Econ UNEC, Baku, Azerbaijan
[5] Khazar Univ, Dept Math, Baku, Azerbaijan
关键词
Berezin norm; Berezin radius; bounded linear operator; reproducing kernel Hilbert space; NUMERICAL RADIUS; UPPER-BOUNDS; NUMBER; SYMBOLS;
D O I
10.1080/01630563.2023.2221857
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide a new norm(a-Berezin norm) on the space of all bounded linear operators defined on a reproducing kernel Hilbert space, which generalizes the Berezin radius and the Berezin norm. We study the basic properties of the a-Berezin norm and develop various inequalities involving the a-Berezin norm. By using the inequalities we obtain various bounds for the Berezin radius of bounded linear operators, which improve on the earlier bounds. Further, we obtain a Berezin radius inequality for the sum of the product of operators, from which we derive new Berezin radius bounds.
引用
收藏
页码:970 / 986
页数:17
相关论文
共 36 条
[1]  
Basaran H., 2023, Montes Taurus J. Pure Appl. Math., V5, P16
[2]   INEQUALITIES RELATED TO BEREZIN NORM AND BEREZIN NUMBER OF OPERATORS [J].
Basaran, Hamdullah ;
Huban, Mualla Birgul ;
Gurdal, Mehmet .
BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 14 (02) :1-11
[3]  
Berezin F. A., 1972, Math. USSR-Izv., V6, P1117
[4]  
Bhunia P., 2023, ARXIV
[5]  
Bhunia P., 2021, ARXIV
[6]  
Bhunia P., 2022, Infosys Science Foundation Series in Mathematical Sciences, DOI DOI 10.1007/978-3-031-13670-2
[7]   Development of the Berezin Number Inequalities [J].
Bhunia, Pintu ;
Sen, Anirban ;
Paul, Kallol .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (07) :1219-1228
[8]  
Bhunia P, 2022, J CONVEX ANAL, V29, P1149
[9]   Inequalities Involving Berezin Norm and Berezin Number [J].
Bhunia, Pintu ;
Paul, Kallol ;
Sen, Anirban .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (01)
[10]   Development of inequalities and characterization of equality conditions for the numerical radius [J].
Bhunia, Pintu ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 :306-315