Toward Directional Motion on Graphene by Uniaxial Strain

被引:1
作者
Mofidi, Seyedeh Mahsa [1 ,2 ]
Pishkenari, Hossein Nejat [3 ]
Edelmaier, Christopher J. J. [2 ]
机构
[1] Sharif Univ Technol, Inst Nanosci & Nanotechnol INST, Tehran 1458889694, Iran
[2] Univ North Carolina Chapel Hill, Dept Appl Phys Sci, Chapel Hill, NC 27599 USA
[3] Sharif Univ Technol, Mech Engn Dept, Tehran 111559567, Iran
关键词
Graphene surface; Nanotransportation; Strained graphene; Diffusive motion; Directed motion; ELASTIC PROPERTIES; THERMAL-GRADIENTS; CARBON NANOTUBES; DIFFUSIVE MOTION; MOLECULAR-MASS; TRANSPORT; ORIENTATION; DYNAMICS;
D O I
10.1007/s40997-023-00676-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, we report our analysis of potential energy surfaces and molecular dynamics studies to characterize the motion of C-60, a popular wheel for nanotransporters, on graphene substrates with systematically controlled strains. Our studies reveal that on the verge of 20%, uniaxial strain can increase the activation energy barrier such that it reduces the diffusion coefficient and anomaly parameter of motion in one direction while still allowing diffusion in the other. In other words, stretched graphene along the armchair direction can potentially provide a corridor for C-60 to pass along the zigzag direction. Furthermore, the rolling motion of C-60 is prevented by strain, while the molecule can still spin around the vertical axis even at 20% strain. These data provide a new insight for the development of future nanotransport systems.
引用
收藏
页码:691 / 700
页数:10
相关论文
共 73 条
  • [31] Effects of Hydrogen on the Stacking Orientation of Bilayer Graphene Grown on Copper[J]. Lim, Hyungsub;Lee, Hyo Chan;Yoo, Min Seok;Cho, Ara;Nguyen, Nguyen Ngan;Han, Jeong Woo;Cho, Kilwon. CHEMISTRY OF MATERIALS, 2020(24)
  • [32] Phonon thermal transport in strained and unstrained graphene from first principles[J]. Lindsay, L.;Li, Wu;Carrete, Jesus;Mingo, Natalio;Broido, D. A.;Reinecke, T. L. PHYSICAL REVIEW B, 2014(15)
  • [33] Hydrogen on graphene with low amplitude ripples: First-principles calculations[J]. Lobzenko, Ivan;Baimova, J.;Krylova, K. CHEMICAL PHYSICS, 2020
  • [34] Directed motion of C60 on a graphene sheet subjected to a temperature gradient[J]. Lohrasebi, A.;Neek-Amal, M.;Ejtehadi, M. R. PHYSICAL REVIEW E, 2011(04)
  • [35] Slip diffusion and Levy flights of an adsorbed gold nanocluster[J]. Luedtke, WD;Landman, U. PHYSICAL REVIEW LETTERS, 1999(19)
  • [36] Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium[J]. Michalet, Xavier. PHYSICAL REVIEW E, 2010(04)
  • [37] Locomotion of the C60-based nanomachines on graphene surfaces[J]. Mofidi, Seyedeh Mahsa;Pishkenari, Hossein Nejat;Ejtehadi, Mohammad Reza;Akimov, Alexey, V. SCIENTIFIC REPORTS, 2021(01)
  • [38] Role of Graphene Surface Ripples and Thermal Vibrations in Molecular Dynamics of C60[J]. Mofidi, Seyedeh Mahsa;Pishkenari, Hossein Nejat;Ejtehadi, Mohammad Reza;Akimov, Alexey V. JOURNAL OF PHYSICAL CHEMISTRY C, 2019(32)
  • [39] Strain-engineered graphene through a nanostructured substrate. I. Deformations[J]. Neek-Amal, M.;Peeters, F. M. PHYSICAL REVIEW B, 2012(19)
  • [40] Directional control of surface rolling molecules exploiting non-uniform heat-induced substrates[J]. Nemati, Alireza;Pishkenari, Hossein Nejat;Meghdari, Ali;Ge, Shuzhi Sam. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020(46)