Fe-based amorphous alloy wire as highly efficient and stable electrocatalyst for oxygen evolution reaction of water splitting

被引:6
|
作者
Chen, Fengchun [1 ]
Tang, Meifang [1 ]
Zhou, Junhu [1 ]
Zhang, Hongju [2 ]
Su, Chen [1 ]
Guo, Shengfeng [1 ]
机构
[1] Southwest Univ, Analyt & Testing Ctr, Sch Mat & Energy, Chongqing 400715, Peoples R China
[2] Southwest Univ, Analyt & Testing Ctr, Sch Mat & Energy, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Amorphous alloy; OER; Self-supporting electrode; High stability; HIGH-ENTROPY-ALLOY; BIFUNCTIONAL ELECTROCATALYSTS; HYDROGEN-PRODUCTION; IN-SITU; OXIDATION; ELECTROLYSIS; CHALLENGES; ELECTRODES; NI;
D O I
10.1016/j.jallcom.2023.170253
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The slow kinetics of the oxygen evolution reaction (OER) leads to low energy conversion efficiency during water electrolysis, thus it is very important to develop efficient and economical electrocatalysts. With high surface energy and rich active centers, amorphous alloys show excellent potential as self-supporting oxygen evolution catalysts for water splitting. In this work, (Fe0.8Ni0.2)71Mo5P12C10B2 amorphous alloy wire was successfully prepared, and after 5 h immersed in 0.5 mol/L HNO3, the wire surface was covered by the block metallic oxide. At a current density of 10 mA/cm2 in an alkaline electrolyte, the electrochemical results show that the overpotential is only 254 mV and the Tafel slope is 49 mV/dec. After the 194 h stability test, its oxygen evolution performance is even comparable to the commercial RuO2, which has been proven to have excellent electrochemical stability and low preparation cost. The highly efficient catalytic performance mainly originated from the synergistic effect of multi-metal elements and the unique crack surface characteristics which expose more active sites. This work provides new insight into low-metal-cost materials for efficient and durable OER electrocatalysts and their industrial applications in the future. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction
    Wu, Liheng
    Li, Qing
    Wu, Cheng Hao
    Zhu, Huiyuan
    Mendoza-Garcia, Adriana
    Shen, Bo
    Guo, Jinghua
    Sun, Shouheng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (22) : 7071 - 7074
  • [42] Preparation of an Fe2Ni MOF on nickel foam as an efficient and stable electrocatalyst for the oxygen evolution reaction
    Ling, Xintong
    Du, Feng
    Zhang, Yintong
    Shen, Yan
    Li, Tao
    Alsaedi, Ahmed
    Hayat, Tasawar
    Zhou, Yong
    Zou, Zhigang
    RSC ADVANCES, 2019, 9 (57) : 33558 - 33562
  • [43] P-Doped NiFe Alloy-Based Oxygen Evolution Electrocatalyst for Efficient and Stable Seawater Splitting and Organic Electrosynthesis at Neutral pH
    Huang, Shih-Ching
    Yu, Hsiang-Chun
    Peng, Chun-Kuo
    Lin, Yan-Gu
    Lin, Chia-Yu
    SMALL, 2025, 21 (06)
  • [45] A highly efficient electrocatalyst based on amorphous Pd-Cu-S material for hydrogen evolution reaction
    Xu, Wence
    Zhu, Shengli
    Liang, Yanqin
    Cui, Zhenduo
    Yang, Xianjin
    Inoue, Akihisa
    Wang, Hongxia
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (35) : 18793 - 18800
  • [46] Fe-Based Electrocatalysts for Oxygen Evolution Reaction: Progress and Perspectives
    Feng, Chao
    Faheem, M. Bilal
    Fu, Jie
    Xiao, Yequan
    Li, Changli
    Li, Yanbo
    ACS CATALYSIS, 2020, 10 (07) : 4019 - 4047
  • [47] Amorphous aerogel of trimetallic FeCoNi alloy for highly efficient oxygen evolution
    Yan, Su
    Zhong, Mengxiao
    Wang, Ce
    Lu, Xiaofeng
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [48] Electrodeposited Ni-Co-Sn alloy as a highly efficient electrocatalyst for water splitting
    Liu, Yuchan
    Lu, Hongxia
    Kou, Xinli
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (16) : 8099 - 8108
  • [49] Highly Stable and Efficient Oxygen Evolution Electrocatalyst Based on Co Oxides Decorated with Ultrafine Ru Nanoclusters
    Du, Jian
    Chen, Dexin
    Ding, Yunxuan
    Wang, Linqin
    Li, Fei
    Sun, Licheng
    SMALL, 2023, 19 (28)
  • [50] Constructing a homojunction of Fe-Ni3S2 as a highly efficient electrocatalyst for the oxygen evolution reaction
    Shi, Mingyi
    Wan, Zihao
    Liu, Lu
    Wang, Xiaoguang
    Ma, Zizai
    Du, Jianping
    SUSTAINABLE ENERGY & FUELS, 2025,