Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework

被引:12
作者
Min, Hang [1 ,2 ,3 ]
Rabi, Yousef [4 ]
Wadhawan, Ashish [5 ]
Bourgeat, Pierrick [1 ]
Dowling, Jason [1 ,3 ,6 ,7 ,8 ]
White, Jordy [5 ,9 ]
Tchernegovski, Ayden [11 ]
Formanek, Blake [12 ]
Schuetz, Michael [4 ,10 ,13 ,14 ]
Mitchell, Gary [5 ,9 ,10 ]
Williamson, Frances [5 ,9 ,10 ]
Hacking, Craig [5 ,9 ]
Tetsworth, Kevin [5 ]
Schmutz, Beat [4 ,10 ,13 ,14 ]
机构
[1] CSIRO Australian Ehlth Res Ctr, Herston, Qld, Australia
[2] Ingham Inst Appl Med Res, Sydney, NSW, Australia
[3] Univ New South Wales, South Western Clin Sch, Sydney, Australia
[4] Queensland Univ Technol, Fac Engn, Sch Mech Med & Proc Engn, Brisbane, Qld, Australia
[5] Royal Brisbane & Womens Hosp, Herston, Qld, Australia
[6] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW, Australia
[7] Univ Sydney, Inst Med Phys, Sydney, NSW, Australia
[8] Univ Newcastle, Sch Math & Phys Sci, Newcastle, NSW, Australia
[9] Univ Queensland, Med Sch, Brisbane, Qld, Australia
[10] Jamieson Trauma Inst, Herston, Qld, Australia
[11] Monash Med Ctr, Clayton, Vic, Australia
[12] Univ Queensland, Ochsner Clin Sch, Sch Med, Brisbane, Qld, Australia
[13] Queensland Univ Technol, ARC Training Ctr Multiscale 3D Imaging Modelling, Brisbane, Qld, Australia
[14] Queensland Univ Technol, Ctr Biomed Technol, Kelvin Grove, Qld, Australia
关键词
Deep learning; Ensemble learning; Distal radius fracture; X-ray;
D O I
10.1007/s13246-023-01261-4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Distal radius fractures (DRFs) are one of the most common types of wrist fracture and can be subdivided into intra- and extra-articular fractures. Compared with extra-articular DRFs which spare the joint surface, intra-articular DRFs extend to the articular surface and can be more difficult to treat. Identification of articular involvement can provide valuable information about the characteristics of fracture patterns. In this study, a two-stage ensemble deep learning framework was proposed to differentiate intra- and extra-articular DRFs automatically on posteroanterior (PA) view wrist X-rays. The framework firstly detects the distal radius region of interest (ROI) using an ensemble model of YOLOv5 networks, which imitates the clinicians' search pattern of zooming in on relevant regions to assess abnormalities. Secondly, an ensemble model of EfficientNet-B3 networks classifies the fractures in the detected ROIs into intra- and extra-articular. The framework achieved an area under the receiver operating characteristic curve of 0.82, an accuracy of 0.81, a true positive rate of 0.83 and a false positive rate of 0.27 (specificity of 0.73) for differentiating intra- from extra-articular DRFs. This study has demonstrated the potential in automatic DRF characterization using deep learning on clinically acquired wrist radiographs and can serve as a baseline for further research in incorporating multi-view information for fracture classification.
引用
收藏
页码:877 / 886
页数:10
相关论文
共 31 条
[1]  
Corsino CB, 2019, DISTAL RADIUS FRACTU
[2]   Randaugment: Practical automated data augmentation with a reduced search space [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Shlens, Jonathon ;
Le, Quoc, V .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :3008-3017
[3]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[4]  
Duncan SFM, 2001, INJURY, V32, P14, DOI 10.1016/S0020-1383(01)00057-2
[5]   Anatomy, Biomechanics, and Loads of the Wrist Joint [J].
Eschweiler, Joerg ;
Li, Jianzhang ;
Quack, Valentin ;
Rath, Bjoern ;
Baroncini, Alice ;
Hildebrand, Frank ;
Migliorini, Filippo .
LIFE-BASEL, 2022, 12 (02)
[6]  
Feng Yang, 2021, Journal of Physics: Conference Series, V1800, DOI 10.1088/1742-6596/1800/1/012006
[7]  
FRYKMAN GOSTA, 1967, ACTA ORTHOP SCAND SUPPL, V108, P1
[8]   Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments [J].
Gan, Kaifeng ;
Xu, Dingli ;
Lin, Yimu ;
Shen, Yandong ;
Zhang, Ting ;
Hu, Keqi ;
Zhou, Ke ;
Bi, Mingguang ;
Pan, Lingxiao ;
Wu, Wei ;
Liu, Yunpeng .
ACTA ORTHOPAEDICA, 2019, 90 (04) :394-400
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Learning non-maximum suppression [J].
Hosang, Jan ;
Benenson, Rodrigo ;
Schiele, Bernt .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6469-6477