Fractal Analysis in Pulmonary CT Images of COVID-19-Infected Patients

被引:6
|
作者
Paun, Maria-Alexandra [1 ,2 ]
Postolache, Paraschiva [3 ,4 ]
Nichita, Mihai-Virgil [5 ]
Paun, Vladimir-Alexandru [6 ]
Paun, Viorel-Puiu [7 ,8 ]
机构
[1] Swiss Fed Inst Technol EPFL, Sch Engn, CH-1015 Lausanne, Switzerland
[2] Fed Off Commun OFCOM, Div Radio Monitoring & Equipment, Sect Market Access & Conform, CH-2501 Biel, Switzerland
[3] Grigore T Popa Univ Med & Pharm, Med Dept, Iasi 700115, Romania
[4] Rehabil Clin Hosp, Med Dept, Iasi 700661, Romania
[5] Univ Politehn Bucuresti, Fac Appl Sci, Doctoral Sch, Bucharest 060042, Romania
[6] Five Rescue Res Lab, F-75004 Paris, France
[7] Univ Politehn Bucuresti, Fac Appl Sci, Dept Phys, Bucharest 060042, Romania
[8] Acad Romanian Scientists, Bucharest 050094, Romania
关键词
computed tomography; picture texture; fractal analysis; fractal dimension; lacunarity; CHEST CT; DIAGNOSIS; DIMENSION;
D O I
10.3390/fractalfract7040285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose to quantitatively compare the loss of human lung health under the influence of the illness with COVID-19, based on the fractal-analysis interpretation of the chest-pulmonary CT pictures, in the case of small datasets, which are usually encountered in medical applications. The fractal analysis characteristics, such as fractal dimension and lacunarity measured values, have been utilized as an effective advisor to interpretation of pulmonary CT picture texture.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Pulmonary cavitation in patients with COVID-19
    Marchiori, Edson
    Nobre, Luiz Felipe
    Hochhegger, Bruno
    Zanetti, Glaucia
    CLINICAL IMAGING, 2022, 88 : 78 - 79
  • [42] Pulmonary Artery Filling Defects in COVID-19 Patients Revealed Using CT Pulmonary Angiography: A Predictable Complication?
    Scardapane, Arnaldo
    Villani, Laura
    Bavaro, Davide Fiore
    Passerini, Francesca
    Ianora, Amato Antonio Stabile
    Lucarelli, Nicola Maria
    Angarano, Gioacchino
    Portincasa, Piero
    Palmieri, Vincenzo Ostilio
    Saracino, Annalisa
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [43] Deep Bidirectional Classification Model for COVID-19 Disease Infected Patients
    Pathak, Yadunath
    Shukla, Piyush Kumar
    Arya, K., V
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (04) : 1234 - 1241
  • [44] Monitoring of pulmonary involvement in critically ill COVID-19 patients-should lung ultrasound be preferred over CT?
    Lieveld, Arthur W. E.
    Heldeweg, Micah L. A.
    Schouwenburg, Jasper
    Veldhuis, Lars
    Haaksma, Mark E.
    van Haaften, Rutger M.
    Teunissen, Berend P.
    Smit, Jasper M.
    Twisk, Jos
    Heunks, Leo
    Nanayakkara, Prabath W. B.
    Tuinman, Pieter Roel
    ULTRASOUND JOURNAL, 2023, 15 (01)
  • [45] Application of machine learning in CT images and X-rays of COVID-19 pneumonia
    Zhang, Fengjun
    MEDICINE, 2021, 100 (36) : E26855
  • [46] Denoised CT Images Quality Assessment Through COVID-19 Pneumonia Detection Task
    Xia, Lumi
    Jebbari, Houda
    Deforges, Olivier
    Zhang, Lu
    Leveque, Lucie
    Outtas, Meriem
    2023 15TH INTERNATIONAL CONFERENCE ON QUALITY OF MULTIMEDIA EXPERIENCE, QOMEX, 2023, : 183 - 188
  • [47] Deep learning for COVID-19 detection based on CT images
    Zhao, Wentao
    Jiang, Wei
    Qiu, Xinguo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [48] PixNet for early diagnosis of COVID-19 using CT images
    Pravin S.C.
    Rohith G.
    V K.
    Saranya J.
    Latha B.
    Vigneshwar K.R.
    Krishna S.V.
    Nambirajan H.
    Sumitra Y.
    Multimedia Tools and Applications, 2025, 84 (10) : 8179 - 8203
  • [49] Deep Learning for COVID-19 Diagnosis from CT Images
    Loddo, Andrea
    Pili, Fabio
    Di Ruberto, Cecilia
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [50] Involvement of the Mediastinal Subpleural Pulmonary Parenchyma on Chest CT in COVID-19 patients: A Case Series
    Urciuoli, Luigi
    Guerriero, Elvira
    Musto, Lanfranco
    JOURNAL OF RADIOLOGY CASE REPORTS, 2020, 14 (11): : 1 - 15