Surface viscosities of lipid bilayers determined from equilibrium molecular dynamics simulations

被引:11
作者
Fitzgerald, James E. [1 ]
Venable, Richard M. [2 ]
Pastor, Richard W. [2 ]
Lyman, Edward R. [1 ,3 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[2] NHLBI, Lab Computat Biol, NIH, Bethesda, MD USA
[3] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
ADDITIVE FORCE-FIELD; TEMPERATURE-DEPENDENCE; INTERMONOLAYER FRICTION; IRREVERSIBLE-PROCESSES; MECHANICAL-PROPERTIES; SHEAR VISCOSITY; DIFFUSION; CHARMM; MODEL; GUI;
D O I
10.1016/j.bpj.2023.01.038
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Lipid membrane viscosity is critical to biological function. Bacterial cells grown in different environments alter their lipid composition in order to maintain a specific viscosity, and membrane viscosity has been linked to the rate of cellular respi-ration. To understand the factors that determine the viscosity of a membrane, we ran equilibrium all-atom simulations of single component lipid bilayers and calculated their viscosities. The viscosity was calculated via a Green-Kubo relation, with the stress -tensor autocorrelation function modeled by a stretched exponential function. By simulating a series of lipids at different temper-atures, we establish the dependence of viscosity on several aspects of lipid chemistry, including hydrocarbon chain length, unsaturation, and backbone structure. Sphingomyelin is found to have a remarkably high viscosity, roughly 20 times that of DPPC. Furthermore, we find that inclusion of the entire range of the dispersion interaction increases viscosity by up to 140%. The simulated viscosities are similar to experimental values obtained from the rotational dynamics of small chromophores and from the diffusion of integral membrane proteins but significantly lower than recent measurements based on the deformation of giant vesicles.SIGNIFICANCE Viscosity is a critical property of cell membranes that is actively regulated and known to control the rate of reactions that require the diffusion and encounter of proteins and small molecules. However, experimental measurements span more than an order of magnitude in the obtained viscosity depending on the technique and analysis. Extensive simulations of membrane viscosity are presented in order to make progress toward a unified understanding of membrane viscosity.
引用
收藏
页码:1094 / 1104
页数:11
相关论文
共 56 条
  • [1] Systematic measurements of interleaflet friction in supported bilayers
    Anthony, Autumn A.
    Sahin, Osman
    Yapici, Murat Kaya
    Rogers, Daniel
    Honerkamp-Smith, Aurelia R.
    [J]. BIOPHYSICAL JOURNAL, 2022, 121 (15) : 2981 - 2993
  • [2] Regulation of lipid saturation without sensing membrane fluidity
    Ballweg, Stephanie
    Sezgin, Erdinc
    Doktorova, Milka
    Covino, Roberto
    Reinhard, John
    Wunnicke, Dorith
    Haenelt, Inga
    Levental, Ilya
    Hummer, Gerhard
    Ernst, Robert
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Balucani U., 1994, Dynamics of the liquid state
  • [4] Fluorescence probe partitioning between Lo/Ld phases in lipid membranes
    Baumgart, Tobias
    Hunt, Geoff
    Farkas, Elaine R.
    Webb, Watt W.
    Feigenson, Gerald W.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2007, 1768 (09): : 2182 - 2194
  • [5] Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential)
    Berberan-Santos, MN
    Bodunov, EN
    Valeur, B
    [J]. CHEMICAL PHYSICS, 2005, 315 (1-2) : 171 - 182
  • [6] CHARMM: The Biomolecular Simulation Program
    Brooks, B. R.
    Brooks, C. L., III
    Mackerell, A. D., Jr.
    Nilsson, L.
    Petrella, R. J.
    Roux, B.
    Won, Y.
    Archontis, G.
    Bartels, C.
    Boresch, S.
    Caflisch, A.
    Caves, L.
    Cui, Q.
    Dinner, A. R.
    Feig, M.
    Fischer, S.
    Gao, J.
    Hodoscek, M.
    Im, W.
    Kuczera, K.
    Lazaridis, T.
    Ma, J.
    Ovchinnikov, V.
    Paci, E.
    Pastor, R. W.
    Post, C. B.
    Pu, J. Z.
    Schaefer, M.
    Tidor, B.
    Venable, R. M.
    Woodcock, H. L.
    Wu, X.
    Yang, W.
    York, D. M.
    Karplus, M.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) : 1545 - 1614
  • [7] Viscous control of cellular respiration by membrane lipid composition
    Budin, Itay
    de Rond, Tristan
    Chen, Yan
    Chan, Leanne Jade G.
    Petzold, Christopher J.
    Keasling, Jay D.
    [J]. SCIENCE, 2018, 362 (6419) : 1186 - +
  • [8] Strong influence of periodic boundary conditions on lateral diffusion in lipid bilayer membranes
    Camley, Brian A.
    Lerner, Michael G.
    Pastor, Richard W.
    Brown, Frank L. H.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (24)
  • [9] Lipid Bilayer Domain Fluctuations as a Probe of Membrane Viscosity
    Camley, Brian A.
    Esposito, Cinzia
    Baumgart, Tobias
    Brown, Frank L. H.
    [J]. BIOPHYSICAL JOURNAL, 2010, 99 (06) : L44 - L46
  • [10] A Method for High-Throughput Measurements of Viscosity in Sub-micrometer-Sized Membrane Systems
    Chwastek, Grzegorz
    Petrov, Eugene P.
    Saenz, James Peter
    [J]. CHEMBIOCHEM, 2020, 21 (06) : 836 - 844