Some Edelstein's Fixed Point Theorems in B-S Type Fuzzy Normed Linear Spaces

被引:0
作者
Biswas, Amit [1 ]
Chiney, Moumita [1 ]
Samanta, S. K. [2 ]
机构
[1] Kazi Nazrul Univ, Dept Math, Asansol 713340, West Bengal, India
[2] Visva Bharti, Dept Math, Santini Ketan 731235, West Bengal, India
关键词
Fuzzy normed linear space; a-cauchy sequence; a-convergent sequence; l-fuzzy closed set; fuzzy uniformly convex normed linear space; fixed points;
D O I
10.1142/S1793005724500066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some Edelstein's fixed point theorems involving the concept of asymptotic centre in uniformly convex Banach spaces are proved in Bag and Samanta type fuzzy normed linear spaces.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 14 条
[1]  
Bag S. K., 2005, J FUZZY MATH, V13, P545
[2]   Fixed point theorems on fuzzy normed linear spaces [J].
Bag, T. ;
Samanta, S. K. .
INFORMATION SCIENCES, 2006, 176 (19) :2910-2931
[3]   Fuzzy bounded linear operators [J].
Bag, T ;
Samanta, SK .
FUZZY SETS AND SYSTEMS, 2005, 151 (03) :513-547
[4]  
Bag T., 2003, Journal of Fuzzy Math, V11, P687
[6]  
Cheng S.C., 1994, Bulletin of Calcutta Mathematical Society, V86, P429
[7]   FIXED-POINT THEOREMS IN UNIFORMLY CONVEX BANACH-SPACES [J].
EDELSTEIN, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (02) :369-374
[9]   FINITE DIMENSIONAL FUZZY NORMED LINEAR-SPACE [J].
FELBIN, C .
FUZZY SETS AND SYSTEMS, 1992, 48 (02) :239-248
[10]   ZUM PRINZIP DER KONTRAKTIVEN ABBILDUNG [J].
GOHDE, D .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (3-4) :251-&