Real-time evolution of Anderson impurity models via tensor network influence functionals

被引:34
作者
Ng, Nathan [1 ]
Park, Gunhee [2 ]
Millis, Andrew J. [3 ,4 ]
Chan, Garnet Kin-Lic [5 ]
Reichman, David R. [1 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[3] Columbia Univ, Dept Phys, New York, NY 10027 USA
[4] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[5] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
QUANTUM DYNAMICS; SYSTEM;
D O I
10.1103/PhysRevB.107.125103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we present and analyze two tensor network-based influence functional approaches for simulating the real-time dynamics of quantum impurity models such as the Anderson model. Via comparison with recent numerically exact simulations, we show that such methods accurately capture the long-time nonequilibrium quench dynamics. The two parameters that must be controlled in these tensor network influence functional approaches are a time discretization (Trotter) error and a bond dimension (tensor network truncation) error. We show that the actual numerical uncertainties are controlled by an intricate interplay of these two approximations, which we demonstrate in different regimes. Our work opens the door to using these tensor network influence functional methods as general impurity solvers.
引用
收藏
页数:8
相关论文
共 68 条
[1]   Matrix Product States for Dynamical Simulation of Infinite Chains [J].
Banuls, M. C. ;
Hastings, M. B. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[2]  
Bauernfeind D, 2019, Arxiv, DOI arXiv:1906.09077
[3]   Fork Tensor-Product States: Efficient Multiorbital Real-Time DMFT Solver [J].
Bauernfeind, Daniel ;
Zingl, Manuel ;
Triebl, Robert ;
Aichhorn, Markus ;
Evertz, Hans Gerd .
PHYSICAL REVIEW X, 2017, 7 (03)
[4]   Inclusion-exclusion principle for many-body diagrammatics [J].
Boag, Aviel ;
Gull, Emanuel ;
Cohen, Guy .
PHYSICAL REVIEW B, 2018, 98 (11)
[5]  
Bose A, 2021, Arxiv, DOI arXiv:2106.12523
[6]   Pairwise connected tensor network representation of path integrals [J].
Bose, Amartya .
PHYSICAL REVIEW B, 2022, 105 (02)
[7]   A multisite decomposition of the tensor network path integrals [J].
Bose, Amartya ;
Walters, Peter L. .
JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (02)
[8]  
Cai Z., 2023, CHINESE J POLYM SCI, V92, P1141
[9]   Canonical derivation of the fermionic influence superoperator [J].
Cirio, Mauro ;
Kuo, Po-Chen ;
Chen, Yueh-Nan ;
Nori, Franco ;
Lambert, Neill .
PHYSICAL REVIEW B, 2022, 105 (03)
[10]   Taming the Dynamical Sign Problem in Real-Time Evolution of Quantum Many-Body Problems [J].
Cohen, Guy ;
Gull, Emanuel ;
Reichman, David R. ;
Millis, Andrew J. .
PHYSICAL REVIEW LETTERS, 2015, 115 (26)