Real-time speech MRI datasets with corresponding articulator ground-truth segmentations

被引:4
作者
Ruthven, Matthieu [1 ,2 ]
Peplinski, Agnieszka M. [1 ]
Adams, David M. [1 ]
King, Andrew P. [2 ]
Miquel, Marc Eric [1 ,3 ,4 ]
机构
[1] Barts Hlth NHS Trust, Clin Phys, London EC1A 7BE, England
[2] St Thomas Hosp, Kings Coll London, Sch Biomed Engn & Imaging Sci, Kings Hlth Partners, London SE1 7EH, England
[3] Queen Mary Univ London, Digital Environm Res Inst DERI, Empire House,67-75 New Rd, London E1 1HH, England
[4] Queen Mary Univ London, Adv Cardiovasc Imaging, Barts NIHR BRC, London EC1M 6BQ, England
关键词
TISSUE BOUNDARY SEGMENTATION; RESONANCE-IMAGING ASSESSMENT; VOCAL-TRACT; SEQUENCES; DATABASE; SYSTEM; REST;
D O I
10.1038/s41597-023-02766-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of real-time magnetic resonance imaging (rt-MRI) of speech is increasing in clinical practice and speech science research. Analysis of such images often requires segmentation of articulators and the vocal tract, and the community is turning to deep-learning-based methods to perform this segmentation. While there are publicly available rt-MRI datasets of speech, these do not include ground-truth (GT) segmentations, a key requirement for the development of deep-learning-based segmentation methods. To begin to address this barrier, this work presents rt-MRI speech datasets of five healthy adult volunteers with corresponding GT segmentations and velopharyngeal closure patterns. The images were acquired using standard clinical MRI scanners, coils and sequences to facilitate acquisition of similar images in other centres. The datasets include manually created GT segmentations of six anatomical features including the tongue, soft palate and vocal tract. In addition, this work makes code and instructions to implement a current state-of-the-art deep-learning-based method to segment rt-MRI speech datasets publicly available, thus providing the community and others with a starting point for developing such methods.
引用
收藏
页数:10
相关论文
共 57 条
[1]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]   Comparison of contrast-enhanced videofluoroscopy to unenhanced dynamic MRI in minor patients following surgical correction of velopharyngeal dysfunction [J].
Arendt, C. T. ;
Eichler, K. ;
Mack, M. G. ;
Leithner, D. ;
Zhang, S. ;
Block, K. T. ;
Berdan, Y. ;
Sader, R. ;
Wichmann, J. L. ;
Gruber-Rouh, T. ;
Vogl, T. J. ;
Hoelter, M. C. .
EUROPEAN RADIOLOGY, 2021, 31 (01) :76-84
[3]   Real-time magnetic resonance imaging reveals distinct vocal tract configurations during spontaneous and volitional laughter [J].
Belyk, Michel ;
McGettigan, Carolyn .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2022, 377 (1863)
[4]   Individual differences in vocal size exaggeration [J].
Belyk, Michel ;
Waters, Sheena ;
Kanber, Elise ;
Mique, Marc E. ;
McGettigan, Carolyn .
SCIENTIFIC REPORTS, 2022, 12 (01)
[5]   Region Segmentation in the Frequency Domain Applied to Upper Airway Real-Time Magnetic Resonance Images [J].
Bresch, Erik ;
Narayanan, Shrikanth .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (03) :323-338
[6]   Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge [J].
Campello, Victor M. ;
Gkontra, Polyxeni ;
Izquierdo, Cristian ;
Martin-Isla, Carlos ;
Sojoudi, Alireza ;
Full, Peter M. ;
Maier-Hein, Klaus ;
Zhang, Yao ;
He, Zhiqiang ;
Ma, Jun ;
Parreno, Mario ;
Albiol, Alberto ;
Kong, Fanwei ;
Shadden, Shawn C. ;
Acero, Jorge Corral ;
Sundaresan, Vaanathi ;
Saber, Mina ;
Elattar, Mustafa ;
Li, Hongwei ;
Menze, Bjoern ;
Khader, Firas ;
Haarburger, Christoph ;
Scannell, Cian M. ;
Veta, Mitko ;
Carscadden, Adam ;
Punithakumar, Kumaradevan ;
Liu, Xiao ;
Tsaftaris, Sotirios A. ;
Huang, Xiaoqiong ;
Yang, Xin ;
Li, Lei ;
Zhuang, Xiahai ;
Vilades, David ;
Descalzo, Martin L. ;
Guala, Andrea ;
La Mura, Lucia ;
Friedrich, Matthias G. ;
Garg, Ria ;
Lebel, Julie ;
Henriques, Filipe ;
Karakas, Mahir ;
Cavus, Ersin ;
Petersen, Steffen E. ;
Escalera, Sergio ;
Segui, Santi ;
Rodriguez-Palomares, Jose F. ;
Lekadir, Karim .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3543-3554
[7]  
Carey D., 2017, Cereb. Cortex, V33, P316
[8]  
Carignan C, 2021, LANGUAGE, V97, P333
[9]   Analyzing speech in both time and space: Generalized additive mixed models can uncover systematic patterns of variation in vocal tract shape in real-time MRI [J].
Carignan, Christopher ;
Hoole, Phil ;
Kunay, Esther ;
Pouplier, Marianne ;
Joseph, Arun ;
Voit, Dirk ;
Frahm, Jens ;
Harrington, Jonathan .
LABORATORY PHONOLOGY, 2020, 11 (01)
[10]   A real-time MRI investigation of the role of lingual and pharyngeal articulation in the production of the nasal vowel system of French [J].
Carignan, Christopher ;
Shosted, Ryan K. ;
Fu, Maojing ;
Liang, Zhi-Pei ;
Sutton, Bradley P. .
JOURNAL OF PHONETICS, 2015, 50 :34-51