EasyGraph: A multifunctional, cross-platform, and effective library for interdisciplinary network analysis

被引:11
作者
Gao, Min [1 ]
Li, Zheng [1 ]
Li, Ruichen [1 ]
Cui, Chenhao [1 ]
Chen, Xinyuan [1 ]
Ye, Bodian [1 ]
Li, Yupeng [2 ]
Gu, Weiwei [3 ]
Gong, Qingyuan [1 ]
Wang, Xin [1 ]
Chen, Yang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[2] Hong Kong Baptist Univ, Dept Interact Media, Hong Kong, Peoples R China
[3] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
来源
PATTERNS | 2023年 / 4卷 / 10期
基金
中国国家自然科学基金;
关键词
STRUCTURAL HOLES; CYTOSCAPE;
D O I
10.1016/j.patter.2023.100839
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Networks are powerful tools for representing the relationships and interactions between entities in various disciplines. However, existing network analysis tools and packages either lack powerful functionality or are not scalable for large networks. In this descriptor, we present EasyGraph, an open-source network analysis library that supports several network data formats and powerful network mining algorithms. EasyGraph provides excellent operating efficiency through a hybrid Python/C++ implementation and multiprocessing optimization. It is applicable to various disciplines and can handle large-scale networks. We demonstrate the effectiveness and efficiency of EasyGraph by applying crucial metrics and algorithms to random and real-world networks in domains such as physics, chemistry, and biology. The results demonstrate that EasyGraph improves the network analysis efficiency for users and reduces the difficulty of conducting large-scale network analysis. Overall, it is a comprehensive and efficient open-source tool for interdisciplinary network analysis.
引用
收藏
页数:17
相关论文
共 93 条
[1]   Community extraction and visualization in social networks applied to Twitter [J].
Abdelsadek, Youcef ;
Chelghoum, Kamel ;
Herrmann, Francine ;
Kacem, Imed ;
Otjacques, Benoit .
INFORMATION SCIENCES, 2018, 424 :204-223
[2]   Collaboration networks, structural holes, and innovation: A longitudinal study [J].
Ahuja, G .
ADMINISTRATIVE SCIENCE QUARTERLY, 2000, 45 (03) :425-455
[3]   Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots [J].
Banerjee, Samiran ;
Walder, Florian ;
Buechi, Lucie ;
Meyer, Marcel ;
Held, Alain Y. ;
Gattinger, Andreas ;
Keller, Thomas ;
Charles, Raphael ;
van der Heijden, Marcel G. A. .
ISME JOURNAL, 2019, 13 (07) :1722-1736
[4]   Network science [J].
Barabasi, Albert-Laszlo .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1987)
[5]   Modularity and community detection in bipartite networks [J].
Barber, Michael J. .
PHYSICAL REVIEW E, 2007, 76 (06)
[6]  
Bastian M., 2009, Proceedings of the International Conference on Weblogs and Social Media (ICWSM), P361, DOI 10.1609/icwsm.v3i1.13937
[7]   Simplicial closure and higher-order link prediction [J].
Benson, Austin R. ;
Abebe, Rediet ;
Schaub, Michael T. ;
Jadbabaie, Ali ;
Kleinberg, Jon .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (48) :E11221-E11230
[8]  
Berdine J, 2007, LECT NOTES COMPUT SC, V4590, P178
[9]   Competition and multiscaling in evolving networks [J].
Bianconi, G ;
Barabási, AL .
EUROPHYSICS LETTERS, 2001, 54 (04) :436-442
[10]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308