One-loop matrix element emulation with factorisation awareness

被引:6
作者
Maitre, D. [1 ]
Truong, H. [1 ,2 ]
机构
[1] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England
[2] Univ Durham, Inst Data Sci, South Rd, Durham DH1 3LE, England
关键词
Higher-Order Perturbative Calculations; Automation;
D O I
10.1007/JHEP05(2023)159
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this article we present an emulation strategy for one-loop matrix elements. This strategy is based on the factorisation properties of matrix elements and is an extension of the work presented in [1]. We show that a percent-level accuracy can be achieved even for large multiplicity processes. The point accuracy obtained is such that it dwarfs the statistical accuracy of the training sample which allows us to use our model to augment the size of the training set by orders of magnitude without additional evaluations of expensive one-loop matrix elements.
引用
收藏
页数:21
相关论文
共 54 条
[1]  
Abadi M., 2016, arXiv, DOI [10.48550/arXiv.1603.04467, DOI 10.48550/ARXIV.1603.04467]
[2]  
Alanazi Y, 2021, Arxiv, DOI arXiv:2001.11103
[3]   The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations [J].
Alwall, J. ;
Frederix, R. ;
Frixione, S. ;
Hirschi, V. ;
Maltoni, F. ;
Mattelaer, O. ;
Shao, H. -S. ;
Stelzer, T. ;
Torrielli, P. ;
Zaro, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)
[4]   Optimising simulations for diphoton production at hadron colliders using amplitude neural networks [J].
Aylett-Bullock, Joseph ;
Badger, Simon ;
Moodie, Ryan .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
[5]  
Azzi P., 2019, CERN Yellow Rep. Monogr., V7, P1
[6]   How to GAN Event Unweighting [J].
Backes, Mathias ;
Butter, Anja ;
Plehn, Tilman ;
Winterhalder, Ramon .
SCIPOST PHYSICS, 2021, 10 (04)
[7]  
Badger S, 2022, Arxiv, DOI arXiv:2206.14831
[8]   Using neural networks for efficient evaluation of high multiplicity scattering amplitudes [J].
Badger, Simon ;
Bullock, Joseph .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
[9]   Parameterized neural networks for high-energy physics [J].
Baldi, Pierre ;
Cranmer, Kyle ;
Faucett, Taylor ;
Sadowski, Peter ;
Whiteson, Daniel .
EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (05)
[10]   The path to proton structure at 1% accuracy NNPDF Collaboration [J].
Ball, Richard D. ;
Carrazza, Stefano ;
Cruz-Martinez, Juan ;
Del Debbio, Luigi ;
Forte, Stefano ;
Giani, Tommaso ;
Iranipour, Shayan ;
Kassabov, Zahari ;
Latorre, Jose, I ;
Nocera, Emanuele R. ;
Pearson, Rosalyn L. ;
Rojo, Juan ;
Stegeman, Roy ;
Schwan, Christopher ;
Ubiali, Maria ;
Voisey, Cameron ;
Wilson, Michael .
EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (05)