Recent advances in de novo computational design and redesign of intrinsically disordered proteins and intrinsically disordered protein regions

被引:2
|
作者
Saikia, Bondeepa [1 ]
Baruah, Anupaul [1 ]
机构
[1] Dibrugarh Univ, Dept Chem, Dibrugarh 786004, Assam, India
关键词
Computational protein design; Intrinsically disordered proteins; Intrinsically disordered protein regions; Potential energy landscape; SEQUENCE-ENSEMBLE RELATIONSHIPS; CONFORMATIONAL PROPENSITIES; FORCE-FIELDS; SIMULATIONS; DYNAMICS; BINDING; DETERMINANTS; FLUCTUATIONS; PREDICTION; ALGORITHM;
D O I
10.1016/j.abb.2023.109857
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the early 2000s, the concept of "unstructured biology"has emerged to be an important field in protein science by generating various new research directions. Many novel strategies and methods have been developed that are focused on effectively identifying/predicting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs), identifying their potential functions, disorder based drug design etc. Due to the range of functions of IDPs/IDPRs and their involvement in various debilitating diseases they are of contemporary interest to the scientific community. Recent researches are focused on designing/redesigning specific IDPs/IDPRs de novo. These de novo design/redesigns of IDPs/IDPRs are carried out by altering compositional biases and specific sequence patterning parameters. The main focus of these researches is to influence specific molecular functions, phase behavior, cellular phenotypes etc. In this review, we first provide the differences of natively folded and natively unfolded or IDPs with respect to their potential energy landscapes. Here, we provide current understandings on the different computational design strategies and methods that have been utilized in de novo design and redesigns of IDPs and IDPRs. Finally, we conclude the review by discussing the challenges that have been faced during the computational design/design attempts of IDPs/IDPRs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Intrinsically disordered proteins
    Tompa, Peter
    Han, Kyou-Hoon
    PHYSICS TODAY, 2012, 65 (08) : 64 - 65
  • [22] Intrinsically disordered proteins
    Herlekar, Ipsita
    CURRENT SCIENCE, 2018, 114 (06): : 1156 - 1156
  • [23] A Low Computational Complexity Scheme for the Prediction of Intrinsically Disordered Protein Regions
    He, Hao
    Zhao, Jiaxiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [24] Prediction of the Disordered Regions of Intrinsically Disordered Proteins Based on the Molecular Functions
    Xie, WeiXia
    Feng, Yong E.
    PROTEIN AND PEPTIDE LETTERS, 2020, 27 (04): : 279 - 286
  • [25] Intrinsically disordered protein
    Dunker, AK
    Lawson, JD
    Brown, CJ
    Williams, RM
    Romero, P
    Oh, JS
    Oldfield, CJ
    Campen, AM
    Ratliff, CR
    Hipps, KW
    Ausio, J
    Nissen, MS
    Reeves, R
    Kang, CH
    Kissinger, CR
    Bailey, RW
    Griswold, MD
    Chiu, M
    Garner, EC
    Obradovic, Z
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2001, 19 (01): : 26 - 59
  • [26] EPR in Protein Science Intrinsically Disordered Proteins
    Drescher, Malte
    EPR SPECTROSCOPY: APPLICATIONS IN CHEMISTRY AND BIOLOGY, 2012, 321 : 91 - 119
  • [27] Intrinsically disordered proteins: dancing protein clouds
    Uversky, V. N.
    FEBS JOURNAL, 2014, 281 : 63 - 63
  • [28] Compositional Bias of Intrinsically Disordered Proteins and Regions and Their Predictions
    Zhao, Bi
    Kurgan, Lukasz
    BIOMOLECULES, 2022, 12 (07)
  • [29] Intrinsically disordered proteins/regions and insight into their biomolecular interactions
    Chakrabarti, Pinak
    Chakravarty, Devlina
    BIOPHYSICAL CHEMISTRY, 2022, 283
  • [30] Analysis of structured and intrinsically disordered regions of transmembrane proteins
    Xue, Bin
    Li, Liwei
    Meroueh, Samy O.
    Uversky, Vladimir N.
    Dunker, A. Keith
    MOLECULAR BIOSYSTEMS, 2009, 5 (12) : 1688 - 1702