Effects of liquid water on transport in the catalyst layer of proton exchange membrane fuel cells

被引:1
|
作者
Min, Ting [1 ]
Zhou, Qiang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
catalyst layer; proton exchange membrane fuel cells; lattice Boltzmann method; local transport resistance; liquid water; PORE-SCALE; SIMULATION; RESISTANCE; IMPACT; MODEL; FLOW;
D O I
10.3389/fenrg.2023.1330124
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Catalyst layers (CLs) of proton exchange membrane fuel cells (PEMFCs) where the electrochemical reactions take place have a critical effect on the cell performance and liquid water forming in CLs during operation can influence the reactive transport processes which is challenge for experimental observation due to the temporal and spatial limitation. In this study, nanoscale structures of CLs in PEMFCs are reconstructed with pores, carbon, platinum (Pt) particles, and ionomers fully resolved. Distributions of liquid water with different saturations and wettabilities within nanoscale structures are simulated by the lattice Boltzmann method. Pore-scale modeling of oxygen reactive transport in the nanoscale structures is implemented, with oxygen diffusion in pores and ionomers, as well as an electrochemical reaction at the Pt surface considered. Effects of liquid water on the pore size distribution, electrochemical area, and oxygen concentration distribution are discussed. Liquid water in hydrophilic CL tends to form a film covering the reactive sites, while that in hydrophobic CL forms a droplet preferentially occupying large pores. For the hydrophilic case, local transport resistance increases significantly under a low saturation, while for the hydrophobic case, a remarkable increase in the local transport resistance can only be found after liquid water saturation higher than 0.8. Finally, the conjecture that liquid water in pores with a size smaller than a threshold pore size can conduct protons is considered. Different values of the threshold pore size are studied. The results show that when the threshold value is greater than 10 nm, the local transport resistance will decrease as the liquid water saturation increases, which means the optimizing strategy of CL needs to carefully consider the effects of liquid water.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Liquid water transport phenomena in the porous transport layer of proton exchange membrane fuel cell based on lattice Boltzmann simulation
    Jiang, Ziheng
    Yang, Guogang
    Shen, Qiuwan
    Li, Shian
    Liao, Jiadong
    Yang, Xiaoxing
    Sun, Juncai
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [42] EFFECTS OF ROUGHNESS OF GAS DIFFUSION LAYER SURFACE ON LIQUID WATER TRANSPORT IN MICRO GAS CHANNELS OF A PROTON EXCHANGE MEMBRANE FUEL CELL
    Chen, Li
    Luan, HuiBao
    He, Ya-Ling
    Tao, Wen-Quan
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2012, 62 (04) : 295 - 318
  • [43] Effects of catalyst layer structure and wettability on liquid water transport in polymer electrolyte membrane fuel cell
    Das, Prodip K.
    Li, Xianguo
    Xie, Zhong
    Liu, Zhong-Sheng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (15) : 1325 - 1339
  • [44] Pore-scale study of reactive transport processes in catalyst layer agglomerates of proton exchange membrane fuel cells
    Chen, Li
    Kang, Qinjun
    Tao, Wenquan
    ELECTROCHIMICA ACTA, 2019, 306 : 454 - 465
  • [45] Hierarchical catalyst layer structure for enhancing local oxygen transport in low Pt proton exchange membrane fuel cells
    Su, Yongjian
    Cheng, Xiaojing
    Feng, Yong
    Li, Huiyuan
    Yan, Cheng
    He, Miaomiao
    Luo, Liuxuan
    Shen, Shuiyun
    Yan, Xiaohui
    Zhang, Junliang
    JOURNAL OF POWER SOURCES, 2024, 603
  • [46] Effects of Gas-Diffusion Layers and Water Management on the Carbon Corrosion of a Catalyst Layer in Proton-Exchange Membrane Fuel Cells
    Lee, Sumin
    Kim, Changki
    Lee, Eunjik
    Choi, Yoon-Young
    Jung, Sung Yong
    Sohn, Young-Jun
    Oh, Hwanyeong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [47] Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells
    Yakovlev, Yurii V.
    Lobko, Yevheniia V.
    Vorokhta, Maryna
    Novakova, Jaroslava
    Mazur, Michal
    Matolinova, Iva
    Matolin, Vladimir
    JOURNAL OF POWER SOURCES, 2021, 490
  • [48] Effects of water dynamic behavior on oxygen transport in catalyst layers: A pore-scale study of proton exchange membrane fuel cells
    Zou, Guofu
    Chen, Wenshang
    Shen, Jun
    Yang, Tianqi
    Chen, Ben
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2025, 164
  • [49] Effect of polytetrafluoroethylene shedding on water and heat transport in the gas diffusion layer of proton exchange membrane fuel cells
    Jiadong Liao
    Guogang Yang
    Qiuwan Shen
    Shian Li
    Ziheng Jiang
    Pengyu Chen
    Shuqian Zhang
    Juncai Sun
    Bing Sun
    Ionics, 2024, 30 : 1489 - 1501
  • [50] Systematic study on the functions and mechanisms of micro porous layer on water transport in proton exchange membrane fuel cells
    Chen, Guiyin
    Zhang, Guangsheng
    Guo, Liejin
    Liu, Hongtan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (09) : 5063 - 5073