Effects of liquid water on transport in the catalyst layer of proton exchange membrane fuel cells

被引:1
|
作者
Min, Ting [1 ]
Zhou, Qiang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
catalyst layer; proton exchange membrane fuel cells; lattice Boltzmann method; local transport resistance; liquid water; PORE-SCALE; SIMULATION; RESISTANCE; IMPACT; MODEL; FLOW;
D O I
10.3389/fenrg.2023.1330124
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Catalyst layers (CLs) of proton exchange membrane fuel cells (PEMFCs) where the electrochemical reactions take place have a critical effect on the cell performance and liquid water forming in CLs during operation can influence the reactive transport processes which is challenge for experimental observation due to the temporal and spatial limitation. In this study, nanoscale structures of CLs in PEMFCs are reconstructed with pores, carbon, platinum (Pt) particles, and ionomers fully resolved. Distributions of liquid water with different saturations and wettabilities within nanoscale structures are simulated by the lattice Boltzmann method. Pore-scale modeling of oxygen reactive transport in the nanoscale structures is implemented, with oxygen diffusion in pores and ionomers, as well as an electrochemical reaction at the Pt surface considered. Effects of liquid water on the pore size distribution, electrochemical area, and oxygen concentration distribution are discussed. Liquid water in hydrophilic CL tends to form a film covering the reactive sites, while that in hydrophobic CL forms a droplet preferentially occupying large pores. For the hydrophilic case, local transport resistance increases significantly under a low saturation, while for the hydrophobic case, a remarkable increase in the local transport resistance can only be found after liquid water saturation higher than 0.8. Finally, the conjecture that liquid water in pores with a size smaller than a threshold pore size can conduct protons is considered. Different values of the threshold pore size are studied. The results show that when the threshold value is greater than 10 nm, the local transport resistance will decrease as the liquid water saturation increases, which means the optimizing strategy of CL needs to carefully consider the effects of liquid water.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management
    Zhou, Yingjie
    Zhang, Wenhui
    Yu, Shengwei
    Jiang, Haibo
    Li, Chunzhong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 44 : 246 - 252
  • [32] Benzoic acid as additive: A route to inhibit the formation of cracks in catalyst layer of proton exchange membrane fuel cells
    Liu, Pengcheng
    Yang, Daijun
    Li, Bing
    Kang, Jialun
    Zhang, Cunman
    Ming, Pingwen
    Pan, Xiangmin
    Liu, Hengzhi
    JOURNAL OF POWER SOURCES, 2024, 591
  • [33] Reconstruction and optimization of catalyst layer of high temperature proton exchange membrane fuel cell
    Xia, Lingchao
    Tao, Shi
    Ni, Meng
    Wang, Yang
    Wu, Chengru
    Xu, Qidong
    Dai, Yawen
    Cheng, Chun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (84) : 35778 - 35789
  • [34] NUMERICAL PREDICTION OF EFFECTIVE THERMAL CONDUCTIVITY OF CATALYST LAYERS IN PROTON EXCHANGE MEMBRANE FUEL CELLS
    Zhang, Ruiyuan
    Li, Chen
    Fang, Wenzhen
    Tao, Wenquan
    4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [35] A proposed agglomerate model for oxygen reduction in the catalyst layer of proton exchange membrane fuel cells
    Zhang, Xiaoxian
    Gao, Yuan
    Ostadi, Hossein
    Jiang, Kyle
    Chen, Rui
    ELECTROCHIMICA ACTA, 2014, 150 : 320 - 328
  • [36] In situ diagnostics for water transport in proton exchange membrane fuel cells
    Tsushima, Shohji
    Hirai, Shuichiro
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2011, 37 (02) : 204 - 220
  • [37] Revealing the Oxygen Transport Challenges in Catalyst Layers in Proton Exchange Membrane Fuel Cells and Water Electrolysis
    Li, Huiyuan
    Yuan, Shu
    You, Jiabin
    Zhao, Congfan
    Cheng, Xiaojing
    Luo, Liuxuan
    Yan, Xiaohui
    Shen, Shuiyun
    Zhang, Junliang
    Nano-Micro Letters, 2025, 17 (01)
  • [38] Effects of gradient structures of cathode catalyst layers on performance and durability of proton exchange membrane fuel cells
    Dong, Enci
    Zhao, Hancheng
    Zhang, Ruiyuan
    Chen, Li
    Tao, Wen-Quan
    ELECTROCHIMICA ACTA, 2024, 477
  • [39] Pore-scale study of effects of different Pt loading reduction schemes on reactive transport processes in catalyst layers of proton exchange membrane fuel cells
    Zhang, Ruiyuan
    Min, Ting
    Liu, Yan
    Chen, Li
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (38) : 20037 - 20053
  • [40] Tailoring Ionomer Chemistry for Improved Oxygen Transport in the Cathode Catalyst Layer of Proton Exchange Membrane Fuel Cells
    Fang, Siqi
    Liu, Guoliang
    Li, Minghai
    Zhang, Haining
    Yu, Jun
    Zhang, Fangfang
    Pan, Mu
    Tang, Haolin
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (06) : 3590 - 3598