On Entropy of Some Fractal Structures

被引:2
作者
Ghazwani, Haleemah [1 ]
Nadeem, Muhammad Faisal [2 ]
Ishfaq, Faiza [2 ]
Koam, Ali N. A. [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, New Campus, Jazan 2097, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
关键词
entropy; fractals; Zagreb type indices; forgotten index; Sierpinski graph; extended Sierpinski graph; SIERPINSKI; INDEX; CLASSIFICATION; CODES;
D O I
10.3390/fractalfract7050378
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Shannon entropy, also known as information entropy or entropy, measures the uncertainty or randomness of probability distribution. Entropy is measured in bits, quantifying the average amount of information required to identify an event from the distribution. Shannon's entropy theory initiates graph entropies and develops information-theoretic magnitudes for structural computational evidence of organic graphs and complex networks. Graph entropy measurements are valuable in several scientific fields, such as computing, chemistry, biology, and discrete mathematics. In this study, we investigate the entropy of fractal-type networks by considering cycle, complete, and star networks as base graphs using degree-based topological indices.
引用
收藏
页数:23
相关论文
共 50 条
[31]   Understanding the Fractal Dimensions of Urban Forms through Spatial Entropy [J].
Chen, Yanguang ;
Wang, Jiejing ;
Feng, Jian .
ENTROPY, 2017, 19 (11)
[32]   The Total Entropy Model of Fractal Supply Chain Network System [J].
You, Hong ;
Hao, Zhongxiao ;
Wang, Quan .
INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS, PTS 1 AND 2, 2010, :1269-+
[33]   Spatial Measures of Urban Systems: from Entropy to Fractal Dimension [J].
Chen, Yanguang ;
Huang, Linshan .
ENTROPY, 2018, 20 (12)
[34]   CAPITAL MARKETS EFFICIENCY: FRACTAL DIMENSION, HURST EXPONENT AND ENTROPY [J].
Kristoufek, Ladislav ;
Vosvrda, Miloslav .
POLITICKA EKONOMIE, 2012, 60 (02) :208-221
[35]   Entropy Evaluation Model of Fractal Integration of the Knowledge of Supply Chain [J].
Sun, Wenfang ;
Bai, Linfeng ;
Qu, Xilong .
JOURNAL OF COMPUTERS, 2012, 7 (04) :819-826
[36]   Fractal Structure and Entropy Production within the Central Nervous System [J].
Seely, Andrew J. E. ;
Newman, Kimberley D. ;
Herry, Christophe L. .
ENTROPY, 2014, 16 (08) :4497-4520
[37]   Entropy Measures of Some Nanotubes [J].
Yasmeen, Farhana ;
Ali, Kashif ;
Shahid, Muhammad .
POLYCYCLIC AROMATIC COMPOUNDS, 2022, 42 (09) :6592-6604
[38]   Entropy and fractal analysis of brain-related neurophysiological signals in Alzheimer's and Parkinson's disease [J].
Averna, Alberto ;
Coelli, Stefania ;
Ferrara, Rosanna ;
Cerutti, Sergio ;
Priori, Alberto ;
Bianchi, Anna Maria .
JOURNAL OF NEURAL ENGINEERING, 2023, 20 (05)
[39]   Reciprocal Tree-Like Fractal Structures [J].
Sanchez-Sanchez, Jose ;
Escrig Pallares, Felix ;
Teresa Rodriguez-Leon, Maria .
NEXUS NETWORK JOURNAL, 2014, 16 (01) :135-150
[40]   Reciprocal Tree-Like Fractal Structures [J].
José Sánchez-Sánchez ;
Félix Escrig Pallarés ;
Maria Teresa Rodríguez-León .
Nexus Network Journal, 2014, 16 :135-150