On Entropy of Some Fractal Structures

被引:2
作者
Ghazwani, Haleemah [1 ]
Nadeem, Muhammad Faisal [2 ]
Ishfaq, Faiza [2 ]
Koam, Ali N. A. [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, New Campus, Jazan 2097, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
关键词
entropy; fractals; Zagreb type indices; forgotten index; Sierpinski graph; extended Sierpinski graph; SIERPINSKI; INDEX; CLASSIFICATION; CODES;
D O I
10.3390/fractalfract7050378
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Shannon entropy, also known as information entropy or entropy, measures the uncertainty or randomness of probability distribution. Entropy is measured in bits, quantifying the average amount of information required to identify an event from the distribution. Shannon's entropy theory initiates graph entropies and develops information-theoretic magnitudes for structural computational evidence of organic graphs and complex networks. Graph entropy measurements are valuable in several scientific fields, such as computing, chemistry, biology, and discrete mathematics. In this study, we investigate the entropy of fractal-type networks by considering cycle, complete, and star networks as base graphs using degree-based topological indices.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Optical diagnostics of asymmetrical fractal structures
    Angelsky, OV
    Kovalchuk, AV
    Maksimyak, PP
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 (01): : 103 - 108
  • [22] DYNAMICAL CHARACTERIZATION OF MIXED FRACTAL STRUCTURES
    Bevilacqua, Luiz
    Barros, Marcelo M.
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2011, 6 (1-4) : 51 - 69
  • [23] Energy functionals on certain fractal structures
    Mosco, U
    JOURNAL OF CONVEX ANALYSIS, 2002, 9 (02) : 581 - 600
  • [24] Feature selection with SVD entropy: Some modification and extension
    Banerjee, Monami
    Pal, Nikhil R.
    INFORMATION SCIENCES, 2014, 264 : 118 - 134
  • [25] Scaling properties of multilayer fractal structures
    Zhukovsky, SV
    Lavrinenko, AV
    Gaponenko, SV
    SARATOV FALL MEETING 2001: COHERENT OPTICS OF ORDERED AND RANDOM MEDIA II, 2002, 4705 : 121 - 128
  • [26] A Time Fractal-Based Complex Belief Entropy in Complex Evidence Theory for Pattern Classification
    Tang, Chen
    Xiao, Fuyuan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (02): : 1175 - 1188
  • [27] Analysing causal structures with entropy
    Weilenmann, Mirjam
    Colbeck, Roger
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2207):
  • [28] SOME PROPERTIES OF THE FRACTAL CONVOLUTION OF FUNCTIONS
    Navascues, Maria A.
    Mohapatra, Ram N.
    Chand, Arya K. B.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (06) : 1735 - 1757
  • [29] Response of some fractal nonlinear systems
    Galiyarova, N
    Korchmaryuk, Y
    FERROELECTRICS, 1999, 222 (1-4) : 389 - 395
  • [30] Some Properties of the Fractal Convolution of Functions
    María A. Navascués
    Ram N. Mohapatra
    Arya K. B. Chand
    Fractional Calculus and Applied Analysis, 2021, 24 : 1735 - 1757