On Entropy of Some Fractal Structures

被引:2
|
作者
Ghazwani, Haleemah [1 ]
Nadeem, Muhammad Faisal [2 ]
Ishfaq, Faiza [2 ]
Koam, Ali N. A. [1 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, New Campus, Jazan 2097, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
关键词
entropy; fractals; Zagreb type indices; forgotten index; Sierpinski graph; extended Sierpinski graph; SIERPINSKI; INDEX; CLASSIFICATION; CODES;
D O I
10.3390/fractalfract7050378
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Shannon entropy, also known as information entropy or entropy, measures the uncertainty or randomness of probability distribution. Entropy is measured in bits, quantifying the average amount of information required to identify an event from the distribution. Shannon's entropy theory initiates graph entropies and develops information-theoretic magnitudes for structural computational evidence of organic graphs and complex networks. Graph entropy measurements are valuable in several scientific fields, such as computing, chemistry, biology, and discrete mathematics. In this study, we investigate the entropy of fractal-type networks by considering cycle, complete, and star networks as base graphs using degree-based topological indices.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] ENTROPY AND FRACTAL NATURE
    Mitic, Vojislav V.
    Lazovic, Goran M.
    Manojlovic, Jelena Z.
    Huang, Wen-Chieh
    Stojiljkovic, Mladen M.
    Facht, Hans
    Vlahovic, Branislav
    THERMAL SCIENCE, 2020, 24 (03): : 2203 - 2212
  • [2] Fractal phase space and fractal entropy of instantaneous cardiac rhythm
    Tsvetkov, V. P.
    Mikheyev, S. A.
    Tsvetkov, I. V.
    CHAOS SOLITONS & FRACTALS, 2018, 108 : 71 - 76
  • [3] THE ε-ENTROPY OF SOME INFINITE DIMENSIONAL COMPACT ELLIPSOIDS AND FRACTAL DIMENSION OF ATTRACTORS
    Anguiano, Maria
    Haraux, Alain
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (03): : 345 - 356
  • [4] Entropy and Fractal Antennas
    Guariglia, Emanuel
    ENTROPY, 2016, 18 (03)
  • [5] Demystifying neuroblastoma malignancy through fractal dimension, entropy, and lacunarity
    Donato, Irene
    Velpula, Kiran K.
    Tsung, Andrew J.
    Tuszynski, Jack A.
    Sergi, Consolato M.
    TUMORI JOURNAL, 2023, 109 (04): : 370 - 378
  • [6] Entropy Improvement for Fractal Image Coder
    Jeng, Jyh-Horng
    Hsu, Shuo-Li
    Chang, Yukon
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2012, 9 (05) : 403 - 410
  • [7] Fractal and Entropy Analysis of the Dow Jones Index Using Multidimensional Scaling
    Machado, Jose A. Tenreiro
    ENTROPY, 2020, 22 (10) : 1 - 18
  • [8] The shifted wavelet (q,q′)-entropy and the classification of stationary fractal signals
    Pacheco, Julio Cesar Ramirez
    Trejo-Sanchez, Joel Antonio
    Rizo-Dominguez, Luis
    NETWORKS AND HETEROGENEOUS MEDIA, 2025, 20 (01) : 89 - 103
  • [9] Fractal compressed sensing imaging with sparse difference based on fractal and entropy recognition
    Liu, J. -X.
    Sun, N.
    Han, G.
    Du, K.
    Li, X. -F.
    Sun, Q. -S.
    IMAGING SCIENCE JOURNAL, 2015, 63 (04) : 203 - 213
  • [10] On a Local Fractional Wave Equation under Fixed Entropy Arising in Fractal Hydrodynamics
    Zhang, Yu
    Baleanu, Dumitru
    Yang, Xiaojun
    ENTROPY, 2014, 16 (12): : 6254 - 6262