PRODUCTS OF TOEPLITZ AND HANKEL OPERATORS ON THE BERGMAN SPACES OF GENERALIZED HARTOGS TRIANGLES

被引:1
作者
Zhang, Shuo [1 ]
机构
[1] Tianjin Univ Technol, Coll Sci, Tianjin, Peoples R China
关键词
Toeplitz operator; Hankel operator; generalized Hartogs triangle; Bergman space; L-P BOUNDEDNESS; PROJECTION;
D O I
10.1216/rmj.2023.53.285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized Hartogs triangles Hn{ki},gamma are nonsmooth Reinhardt domains defined byHn{ki},gamma:= {z = (ez1, ... , ezm, zn)is an element of Cn : max 1 <= i <= m parallel to zei parallel to < |zn|gamma < 11, where (ze1, . . . , ezm) = (z1, . . . , zn-1) with zei is an element of Cki, i = 1, ... , m and k1 + center dot center dot center dot + km = n - 1. We find some "good" holomorphic automorphisms of Hn{ki},gamma and use them to obtain necessary conditions for the Toeplitz and Hankel products to be bounded on the Bergman space of Hn{ki},gamma.
引用
收藏
页码:285 / 297
页数:13
相关论文
共 22 条
[1]  
Beberok T, 2017, B IRAN MATH SOC, V43, P2275
[2]   The Lp boundedness of the Bergman projection for a class of bounded. Hartogs domains [J].
Chen, Liwei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) :598-610
[3]  
Edholm LD, 2017, J GEOM ANAL, V27, P2658, DOI 10.1007/s12220-017-9777-4
[4]   THE BERGMAN PROJECTION ON FAT HARTOGS TRIANGLES: Lp BOUNDEDNESS [J].
Edholm, L. D. ;
Mcneal, J. D. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (05) :2185-2196
[5]  
Krantz SG, 2013, GRAD TEXTS MATH, V268, P1, DOI 10.1007/978-1-4614-7924-6
[6]   Commuting dual Toeplitz operators with pluriharmonic symbols [J].
Lu, WF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (01) :149-156
[7]   Bounded Hankel Products on the Bergman Space of the Polydisk [J].
Lu, Yufeng ;
Shang, Shuxia .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (01) :190-204
[8]   Toeplitz and Hankel Products on Bergman Spaces of the Unit Ball [J].
Lu, Yufeng ;
Liu, Chaomei .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (03) :293-310
[9]   Bounded Toeplitz products on the weighted Bergman spaces of the unit ball [J].
Miao, Jie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) :305-313
[10]   BOUNDED TOEPLITZ AND HANKEL PRODUCTS ON THE WEIGHTED BERGMAN SPACES OF THE UNIT BALL [J].
Michalska, Malgorzata ;
Sobolewski, Pawel .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (02) :237-249