Nogo-B receptor increases glycolysis and the paclitaxel resistance of estrogen receptor-positive breast cancer via the HIF-1α-dependent pathway

被引:9
作者
Liu, Chang [1 ]
Li, Sijie [2 ]
Zhang, Xiaoxiao [2 ]
Jin, Chunxiang [3 ]
Zhao, Baofeng [4 ]
Li, Liying [2 ]
Miao, Qing Robert [5 ]
Jin, Ying [2 ]
Fan, Zhimin [2 ]
机构
[1] Harbin Med Univ, Affiliated Hosp 1, Dept Breast Surg, Harbin, Heilongjiang, Peoples R China
[2] First Hosp Jilin Univ, Dept Breast Surg, Changchun, Jilin, Peoples R China
[3] Jilin Univ, China Japan Union Hosp, Inst Dept Ultrasonog, Changchun, Peoples R China
[4] Dalian Inst, Natl Chromatog R&A Ctr, CAS Key Lab Separat Sci Analyt Chem, Dalian, Liaoning, Peoples R China
[5] NYU, Long Isl Sch Med, Dept Fdn Med, New York, NY 10003 USA
基金
中国国家自然科学基金;
关键词
HYPOXIA; METABOLISM; ALPHA; CELLS; ANGIOGENESIS; INHIBITION; THERAPY;
D O I
10.1038/s41417-022-00542-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Chemotherapy can improve the prognosis and overall survival of breast cancer patients, but chemoresistance continues a major problem in clinical. Most breast cancer is estrogen receptor (ER) positive but responds less to neoadjuvant or adjuvant chemotherapy than ER-negative breast cancer. The Nogo-B receptor (NgBR) increases the chemoresistance of ER-positive breast cancer by facilitating oncogene signaling pathways. Here, we further investigated the potential role of NgBR as a novel target to overcome glycolysis-dependent paclitaxel resistance in ER-positive breast cancer. NgBR knockdown inhibited glycolysis and promoted paclitaxel-induced apoptosis by attenuating HIF-1 alpha expression in ER-positive breast cancer cells via NgBR-mediated estrogen receptor alpha (ER alpha)/hypoxia-inducible factor-1 alpha (HIF-1 alpha) and nuclear factor-kappa B subunit (NF-kappa B)/HIF-1 alpha signaling pathways. A ChIP assay further confirmed that NgBR overexpression not only facilitates ER alpha binding to HIF-1 alpha and GLUT1 genes but also promotes HIF-1 alpha binding to GLUT1, HK2, and LDHA genes, which further promotes glycolysis and induces paclitaxel resistance. In conclusion, our study suggests that NgBR expression is essential for maintaining the metabolism and paclitaxel resistance of ER-positive breast cancer, and the NgBR can be a new therapeutic target for improving chemoresistance in ER-positive breast cancer.
引用
收藏
页码:647 / 658
页数:12
相关论文
共 58 条
[21]   Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-κB/IL-6 signals [J].
Liang, Shuwei ;
Chen, Zhuojia ;
Jiang, Guanmin ;
Zhou, Yan ;
Liu, Qiao ;
Su, Qiao ;
Wei, Weidong ;
Du, Jun ;
Wang, Hongsheng .
CANCER LETTERS, 2017, 386 :12-23
[22]   Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1α [J].
Lim, Sangbin ;
Liu, Hao ;
da Silva, Luciana Madeira ;
Arora, Ritu ;
Liu, Zixing ;
Phillips, Joshua B. ;
Schmitt, David C. ;
Vu, Tung ;
McClellan, Steven ;
Lin, Yifeng ;
Lin, Wensheng ;
Piazza, Gary A. ;
Fodstad, Oystein ;
Tan, Ming .
CANCER RESEARCH, 2016, 76 (08) :2231-2242
[23]   A Small-Molecule Inhibitor of Glucose Transporter 1 Downregulates Glycolysis, Induces Cell-Cycle Arrest, and Inhibits Cancer Cell Growth In Vitro and In Vivo [J].
Liu, Yi ;
Cao, Yanyan ;
Zhang, Weihe ;
Bergmeier, Stephen ;
Qian, Yanrong ;
Akbar, Huzoor ;
Colvin, Robert ;
Ding, Juan ;
Tong, Lingying ;
Wu, Shiyong ;
Hines, Jennifer ;
Chen, Xiaozhuo .
MOLECULAR CANCER THERAPEUTICS, 2012, 11 (08) :1672-1682
[24]   Ammonia mediates mitochondrial uncoupling and promotes glycolysis via HIF-1 activation in human breast cancer MDA-MB-231 cells [J].
Lu, Yapeng ;
Wang, Lu ;
Ding, Wangwang ;
Wang, Dan ;
Wang, Xueting ;
Luo, Qianqian ;
Zhu, Li .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 519 (01) :153-159
[25]   Management of ER positive metastatic breast cancer [J].
McAndrew, Nicholas P. ;
Finn, Richard S. .
SEMINARS IN ONCOLOGY, 2020, 47 (05) :270-277
[26]   Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells [J].
Miao, Robert Qing ;
Gao, Yuan ;
Harrison, Kenneth D. ;
Prendergast, Jay ;
Acevedo, Lisette M. ;
Yu, Jun ;
Hu, Fenghua ;
Strittmatter, Stephen M. ;
Sessa, William C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (29) :10997-11002
[27]   Taxane resistance in breast cancer: Mechanisms, predictive biomarkers and circumvention strategies [J].
Murray, S. ;
Briasoulis, E. ;
Linardou, H. ;
Bafaloukos, D. ;
Papadimitriou, C. .
CANCER TREATMENT REVIEWS, 2012, 38 (07) :890-903
[28]   Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters [J].
Nemcova-Furstova, Vlasta ;
Kopperova, Dana ;
Balusikova, Kamila ;
Ehrlichova, Marie ;
Brynychova, Veronika ;
Vaclavikova, Radka ;
Daniel, Petr ;
Soucek, Pavel ;
Kovar, Jan .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2016, 310 :215-228
[29]   Hexokinase 2 Is Required for Tumor Initiation and Maintenance and Its Systemic Deletion Is Therapeutic in Mouse Models of Cancer [J].
Patra, Krushna C. ;
Wang, Qi ;
Bhaskar, Prashanth T. ;
Miller, Luke ;
Wang, Zebin ;
Wheaton, Will ;
Chandel, Navdeep ;
Laakso, Markku ;
Muller, William J. ;
Allen, Eric L. ;
Jha, Abhishek K. ;
Smolen, Gromoslaw A. ;
Clasquin, Michelle F. ;
Robey, R. Brooks ;
Hay, Nissim .
CANCER CELL, 2013, 24 (02) :213-228
[30]   Progress in adjuvant systemic therapy for breast cancer [J].
Ponde, Noam F. ;
Zardavas, Dimitrios ;
Piccart, Martine .
NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (01) :27-44