Polar map-free 3D deep learning algorithm to predict obstructive coronary artery disease with myocardial perfusion CZT-SPECT

被引:6
作者
Ko, Chi-Lun [1 ,2 ,3 ]
Lin, Shau-Syuan [1 ]
Huang, Cheng-Wen [1 ]
Chang, Yu-Hui [1 ]
Ko, Kuan-Yin [4 ]
Cheng, Mei-Fang [2 ,3 ]
Wang, Shan-Ying [5 ]
Chen, Chung-Ming [1 ]
Wu, Yen-Wen [2 ,3 ,5 ,6 ,7 ,8 ]
机构
[1] Natl Taiwan Univ, Dept Biomed Engn, Taipei, Taiwan
[2] Natl Taiwan Univ Hosp, Dept Nucl Med, Taipei, Taiwan
[3] Natl Taiwan Univ, Coll Med, Taipei, Taiwan
[4] Natl Taiwan Univ Canc Ctr, Dept Nucl Med, Taipei, Taiwan
[5] Far Eastern Mem Hosp, Dept Nucl Med, New Taipei, Taiwan
[6] Far Eastern Mem Hosp, Cardiovasc Med Ctr, Div Cardiol, 21,Sec 2,Nanya S Rd, New Taipei 220, Taiwan
[7] Natl Yang Ming Chiao Tung Univ, Sch Med, Taipei, Taiwan
[8] Yuan Ze Univ, Grad Inst Med, Taoyuan, Taiwan
关键词
Cadmium-zinc-telluride; Coronary artery disease; Myocardial perfusion imaging; Artificial intelligence; Deep learning; DIAGNOSTIC-ACCURACY; REVASCULARIZATION; PERFORMANCE; COMMITTEE; CAMERA; IMPACT;
D O I
10.1007/s00259-022-05953-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Deep learning (DL) models have been shown to outperform total perfusion deficit (TPD) quantification in predicting obstructive coronary artery disease (CAD) from myocardial perfusion imaging (MPI). However, previously published methods have depended on polar maps, required manual correction, and normal database. In this study, we propose a polar map-free 3D DL algorithm to predict obstructive disease. Methods We included 1861 subjects who underwent MPI using cadmium-zinc-telluride camera and subsequent coronary angiography. The subjects were divided into parameterization and external validation groups. We implemented a fully automatic algorithm to segment myocardium, perform registration, and apply normalization. We further flattened the image based on spherical coordinate system transformation. The proposed model consisted of a component to predict patent arteries and a component to predict disease in each vessel. The model was cross-validated in the parameterization group, and then further tested using the external validation group. The performance was assessed by area under receiver operating characteristic curves (AUCs) and compared with TPD. Results Our algorithm preprocessed all images accurately as confirmed by visual inspection. In patient-based analysis, the AUC of the proposed model was significantly higher than that for stress-TPD (0.84 vs 0.76, p < 0.01). In vessel-based analysis, the proposed model also outperformed regional stress-TPD (AUC = 0.80 vs 0.72, p < 0.01). The addition of quantitative images did not improve the performance. Conclusions Our proposed polar map-free 3D DL algorithm to predict obstructive CAD from MPI outperformed TPD and did not require manual correction or a normal database.
引用
收藏
页码:376 / 386
页数:11
相关论文
共 34 条
  • [1] Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)
    Agostini, Denis
    Marie, Pierre-Yves
    Ben-Haim, Simona
    Rouzet, Francois
    Songy, Bernard
    Giordano, Alessandro
    Gimelli, Alessia
    Hyafil, Fabien
    Sciagra, Roberto
    Bucerius, Jan
    Verberne, Hein J.
    Slart, Riemer H. J. A.
    Lindner, Oliver
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (13) : 2423 - 2432
  • [2] Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population
    Arsanjani, Reza
    Dey, Damini
    Khachatryan, Tigran
    Shalev, Aryeh
    Hayes, Sean W.
    Fish, Mathews
    Nakanishi, Rine
    Germano, Guido
    Berman, Daniel S.
    Slomka, Piotr
    [J]. JOURNAL OF NUCLEAR CARDIOLOGY, 2015, 22 (05) : 877 - 884
  • [3] Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study
    Betancur, Julian
    Hu, Lien-Hsin
    Commandeur, Frederic
    Sharir, Tali
    Einstein, Andrew J.
    Fish, Mathews B.
    Ruddy, Terrence D.
    Kaufmann, Philipp A.
    Sinusas, Albert J.
    Miller, Edward J.
    Bateman, Timothy M.
    Dorbala, Sharmila
    Di Carli, Marcelo
    Germano, Guido
    Otaki, Yuka
    Liang, Joanna X.
    Tamarappoo, Balaji K.
    Dey, Damini
    Berman, Daniel S.
    Slomka, Piotr J.
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (05) : 664 - 670
  • [4] Prognostic Value of Combined Clinical and Myocardial Perfusion Imaging Data Using Machine Learning
    Betancur, Julian
    Otaki, Yuka
    Motwani, Manish
    Fish, Mathews B.
    Lemley, Mark
    Dey, Damini
    Gransar, Heidi
    Tamarappoo, Balaji
    Germano, Guido
    Sharir, Tali
    Berman, Daniel S.
    Slomka, Piotr J.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2018, 11 (07) : 1000 - 1009
  • [5] Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT A Multicenter Study
    Betancur, Julian
    Commandeur, Frederic
    Motlagh, Mahsaw
    Sharir, Tali
    Einstein, Andrew J.
    Bokhari, Sabahat
    Fish, Mathews B.
    Ruddy, Terrence D.
    Kaufmann, Philipp
    Sinusas, Albert J.
    Miller, Edward J.
    Bateman, Timothy M.
    Dorbala, Sharmila
    Di Carli, Marcelo
    Germano, Guido
    Otaki, Yuka
    Tamarappoo, Balaji K.
    Dey, Damini
    Berman, Daniel S.
    Slomka, Piotr J.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2018, 11 (11) : 1654 - 1663
  • [6] External validation is necessary in, prediction research: A clinical example
    Bleeker, SE
    Moll, HA
    Steyerberg, EW
    Donders, ART
    Derksen-Lubsen, G
    Grobbee, DE
    Moons, KGM
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2003, 56 (09) : 826 - 832
  • [7] Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart - A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association
    Cerqueira, MD
    Weissman, NJ
    Dilsizian, V
    Jacobs, AK
    Kaul, S
    Laskey, WK
    Pennell, DJ
    Rumberger, JA
    Ryan, T
    Verani, MS
    [J]. CIRCULATION, 2002, 105 (04) : 539 - 542
  • [8] Prognostic Value of Myocardial Perfusion Imaging with a Cadmium-Zinc-Telluride SPECT Camera in Patients Suspected of Having Coronary Artery Disease
    Engbers, Elsemiek M.
    Timmer, Jorik R.
    Mouden, Mohamed
    Knollema, Siert
    Jager, Pieter L.
    Ottervanger, Jan Paul
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (09) : 1459 - 1463
  • [9] 2014 ACC/AHA/AATS/PCNA/SCAI/STS Focused Update of the Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease
    Fihn, Stephan D.
    Blankenship, James C.
    Naidu, Srihari S.
    Ohman, E. Magnus
    Smith, Peter K.
    Alexander, Karen P.
    Bittl, John A.
    Byrne, John G.
    Fletcher, Barbara J.
    Fonarow, Gregg C.
    Lange, Richard A.
    Levine, Glenn N.
    Maddox, Thomas M.
    Anderson, Jeffrey L.
    Halperin, Jonathan L.
    Albert, Nancy M.
    Bozkurt, Biykem
    Brindis, Ralph G.
    Curtis, Lesley H.
    DeMets, David
    Guyton, Robert A.
    Hochman, Judith S.
    Kovacs, Richard J.
    Pressler, Susan J.
    Sellke, Frank W.
    Shen, Win-Kuang
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (18) : 1929 - 1949
  • [10] Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy
    Hachamovitch, Rory
    Rozanski, Alan
    Shaw, Leslee J.
    Stone, Gregg W.
    Thomson, Louise E. J.
    Friedman, John D.
    Hayes, Sean W.
    Cohen, Ishac
    Germano, Guido
    Berman, Daniel S.
    [J]. EUROPEAN HEART JOURNAL, 2011, 32 (08) : 1012 - 1024