Critical and hysteresis behaviors for a hexagonal core-shell structure nanowire in the Blume-Emery-Griffiths model

被引:1
|
作者
Goguin, G. B. Aziza [1 ]
Oke, T. D. [1 ,2 ]
Yessoufou, R. A. A. [1 ,2 ]
Albayrak, E. [3 ]
机构
[1] Inst Math & Phys Sci IMSP, Dangbo, Benin
[2] Univ Abomey Calavi, Dept Phys, Abomey Calavi, Benin
[3] Erciyes Univ, Dept Phys, TR-38039 Kayseri, Turkiye
关键词
Mean field theory; BEG model; Hysteresis loops; Compensation temperature; CYLINDRICAL ISING NANOWIRE; MAGNETIC-PROPERTIES; PHASE-DIAGRAMS; CARBON NANOTUBES; MIXED SPIN-1/2; CRYSTAL-FIELD; THIN-FILMS; SURFACE;
D O I
10.1016/j.physa.2023.128927
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The magnetic properties and hysteresis loops for the hexagonal Ising nanowire (HIN) with core-shell structure consisting of spin -32 are considered in the Blume-Emery- Griffiths (BEG) model by using the mean-field approximation (MFA) based on the Gibbs-Bogoliubov inequality for the free energy. The effects of various bilinear and biquadratic interaction parameters between the core, between the shell, and between the core and shell spins are considered for the phase diagrams of the model when temperature T = 0 and T = 0 in addition to the crystal and external magnetic fields effects. The numerical calculations reveal that the model yields first-and second-order phase transition lines and tricritical points. In addition to the isolated critical and critical end-points, the model exhibits at most two compensation temperatures and interesting multiple hysteresis magnetic loops behaviors strongly dependent on the model parameters. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] HAMILTONIAN STUDIES OF THE BLUME-EMERY-GRIFFITHS MODEL
    ALCARAZ, FC
    DEFELICIO, JRD
    KOBERLE, R
    STILCK, JF
    PHYSICAL REVIEW B, 1985, 32 (11): : 7469 - 7475
  • [12] On the residual entropy of the Blume-Emery-Griffiths model
    Braga, Gastao A.
    Lima, Paulo C.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (03) : 571 - 578
  • [13] ON HORIGUCHI SOLUTION OF THE BLUME-EMERY-GRIFFITHS MODEL
    WU, FY
    PHYSICS LETTERS A, 1986, 116 (05) : 245 - 246
  • [14] The Blume-Emery-Griffiths spin glass model
    Sellitto, M
    Nicodemi, M
    Arenzon, JJ
    JOURNAL DE PHYSIQUE I, 1997, 7 (08): : 945 - 957
  • [15] On the Residual Entropy of the Blume-Emery-Griffiths Model
    Gastão A. Braga
    Paulo C. Lima
    Journal of Statistical Physics, 2008, 130 : 571 - 578
  • [16] ROUGHENING TRANSITION IN THE BLUME-EMERY-GRIFFITHS MODEL
    LIPOWSKI, A
    SUZUKI, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21): : 5695 - 5704
  • [17] BLUME-EMERY-GRIFFITHS MODEL ON HONEYCOMB LATTICE
    WU, XN
    WU, FY
    JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (1-2) : 41 - 55
  • [18] Degenerate Blume-Emery-Griffiths model for the martensitic transformation
    Vives, E
    Castan, T
    Lindgard, PA
    PHYSICAL REVIEW B, 1996, 53 (14): : 8915 - 8921
  • [19] Blume-Emery-Griffiths model in a random crystal field
    Branco, NS
    PHYSICAL REVIEW B, 1999, 60 (02): : 1033 - 1037
  • [20] Ruppeiner geometry of isotropic Blume-Emery-Griffiths model
    Erdem, Riza
    Alata, Nigar
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (11):