Steady-State Semi-Analytical Modeling of p-Doped Quantum Dot Lasers Thermal Characteristics and Extrapolation to Membrane Lasers

被引:0
作者
Chobe, Matteo [1 ,2 ]
Hassan, Karim [1 ]
机构
[1] Univ Grenoble Alpes, CEA, LETI, F-38054 Grenoble, France
[2] Univ Grenoble Alpes, CNRS, CEA LETI Minatec, Grenoble INP,LTM, F-38054 Grenoble, France
关键词
Optoelectronic devices; semiconductor lasers; laser thermal factors; quantum dots; AUGER RECOMBINATION; DFB LASER; GAIN; SI; RELAXATION; DYNAMICS; OPTICS;
D O I
10.1109/JQE.2023.3342180
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a rate equation model for the simulation of quantum dot lasers focusing on modeling the thermal behavior of p-doped devices, which are known to exhibit a reduced temperature sensitivity. The simulation results are compared with experimental data from the literature to demonstrate the model accuracy and underline the impact of npp Auger recombination and intervalence band absorption on the high room-temperature characteristic temperature of p-doped lasers. Applying this model to membrane lasers featuring high optical confinement factors in small active regions due to the use of thin III-V stacks as compared to conventional lasers, we demonstrate the potential of such lasers for short-distance optical interconnects as high temperature (110 C-degrees) operation is predicted for an optimized design, with submilliamp threshold up to 60(degrees)C.
引用
收藏
页数:9
相关论文
共 58 条
[1]   Membrane buried-heterostructure DFB laser with an optically coupled III-V/Si waveguide [J].
Aihara, Takuma ;
Hiraki, Tatsurou ;
Takeda, Koji ;
Fujii, Takuro ;
Kakitsuka, Takaaki ;
Tsuchizawa, Tai ;
Matsuo, Shinji .
OPTICS EXPRESS, 2019, 27 (25) :36438-36448
[2]   Optics in Computing: From Photonic Network-on-Chip to Chip-to-Chip Interconnects and Disintegrated Architectures [J].
Alexoudi, Theonitsa ;
Terzenidis, Nikolaos ;
Pitris, Stelios ;
Moralis-Pegios, Miltiadis ;
Maniotis, Pavlos ;
Vagionas, Christos ;
Mitsolidou, Charoula ;
Mourgias-Alexandris, George ;
Kanellos, George T. ;
Miliou, Amalia ;
Vyrsokinos, Konstantinos ;
Pleros, Nikos .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (02) :363-379
[3]   Photonic crystal nanocavity array laser [J].
Altug, H ;
Vuckovic, J .
OPTICS EXPRESS, 2005, 13 (22) :8819-8828
[4]   Maximum power of quantum dot laser versus internal loss - art. no. 073107 [J].
Asryan, LV .
APPLIED PHYSICS LETTERS, 2006, 88 (07)
[5]   Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices [J].
Berg, TW ;
Bischoff, S ;
Magnusdottir, I ;
Mork, J .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (06) :541-543
[6]  
Boeuf F, 2016, INT SYM VLSI TECHNOL
[7]   External vs. Integrated Light Sources for Intra-Data Center Co-Packaged Optical Interfaces [J].
Buscaino, Brandon ;
Chen, Elizabeth ;
Stewart, James W. ;
Pham, Thang ;
Kahn, Joseph M. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (07) :1984-1996
[8]   Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates [J].
Chen, Siming ;
Liao, Mengya ;
Tang, Mingchu ;
Wu, Jiang ;
Martin, Mickael ;
Baron, Thierry ;
Seeds, Alwyn ;
Liu, Huiyun .
OPTICS EXPRESS, 2017, 25 (05) :4632-4639
[9]  
Chen SM, 2016, NAT PHOTONICS, V10, P307, DOI [10.1038/NPHOTON.2016.21, 10.1038/nphoton.2016.21]
[10]  
Coldren L. A., 2012, Wiley series in microwave and optical engineering, V218