Fast modeling of regenerative amplifier free-electron lasers

被引:2
|
作者
Robles, River R. [1 ,2 ]
Halavanau, Aliaksei [2 ]
Marcus, Gabriel [2 ]
Huang, Zhirong [1 ,2 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 04期
关键词
HIGH-GAIN REGIME; SPONTANEOUS-EMISSION; GAUSSIAN BEAMS; RADIATION; COHERENT; SATURATION; OPERATION; MEDIA; LIGHT;
D O I
10.1103/PhysRevResearch.5.043254
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
High-gain free-electron lasers (FELs) are becoming important light sources at short wavelengths such as the EUV and x-ray regimes. A particularly promising concept is the regenerative amplifier FEL (RAFEL), which can greatly increase the brightness and stability of a single pass device. One of the critical challenges of the x-ray RAFEL is maintaining electron-optical overlap over the relatively large (hundreds of meters) footprint of the system. Numerical modeling of x-ray RAFELs with angular and positional errors is critical for designing stable cavities, as well as to predict signatures of specific misalignment effects. Full-scale simulations of x-ray FELs are incredibly time consuming, making large-scale parameter searches intractable on reasonable timescales. In this paper, we present a semi-analytical model that allows to investigate realistic scenarios-x-ray cavity without gain ("cold cavity" or x-ray FEL oscillator) and x-ray RAFEL-in the presence of angular/positional errors and electron trajectory oscillation. We especially focus on fast modeling of the FEL process and x-ray optics, while capturing effects pertaining to actual experimental setups at the Linac Coherent Light Source (LCLS) at SLAC. Such a method can be used to explore RAFEL at other wavelengths by suitable replacement of the optics modeling.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deformation of an electron bunch caused by free-electron lasers
    Sei, Norihiro
    Zen, Heishun
    Ohgaki, Hideaki
    PHYSICA SCRIPTA, 2023, 98 (02)
  • [2] Photonic Free-Electron Lasers
    van der Slot, P. J. M.
    Denis, T.
    Lee, J. H. H.
    van Dijk, M. W.
    Boller, K. J.
    IEEE PHOTONICS JOURNAL, 2012, 4 (02): : 570 - 573
  • [3] X-ray free-electron lasers: from dreams to reality
    Pellegrini, C.
    PHYSICA SCRIPTA, 2016, T169
  • [4] Tutorial on X-Ray Free-Electron Lasers
    Carlsten, Bruce E.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (06) : 1900 - 1912
  • [5] Photocathode lasers for Free-Electron Lasers
    Winkelmann, Lutz
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [6] The FERMI free-electron lasers
    Allaria, E.
    Badano, L.
    Bassanese, S.
    Capotondi, F.
    Castronovo, D.
    Cinquegrana, P.
    Danailov, M. B.
    D'Auria, G.
    Demidovich, A.
    De Monte, R.
    De Ninno, G.
    Di Mitri, S.
    Diviacco, B.
    Fawley, W. M.
    Ferianis, M.
    Ferrari, E.
    Gaio, G.
    Gauthier, D.
    Giannessi, L.
    Iazzourene, F.
    Kurdi, G.
    Mahne, N.
    Nikolov, I.
    Parmigiani, F.
    Penco, G.
    Raimondi, L.
    Rebernik, P.
    Rossi, F.
    Roussel, E.
    Scafuri, C.
    Serpico, C.
    Sigalotti, P.
    Spezzani, C.
    Svandrlik, M.
    Svetina, C.
    Trovo, M.
    Veronese, M.
    Zangrando, D.
    Zangrando, M.
    JOURNAL OF SYNCHROTRON RADIATION, 2015, 22 : 485 - 491
  • [7] Features and futures of X-ray free-electron lasers
    Huang, Nanshun
    Deng, Haixiao
    Liu, Bo
    Wang, Dong
    Zhao, Zhentang
    INNOVATION, 2021, 2 (02):
  • [8] The Origins and Development of Free-Electron Lasers in the UK
    Seddon, Elaine A.
    Poole, Michael W.
    NOTES AND RECORDS-THE ROYAL SOCIETY JOURNAL OF THE HISTORY OF SCIENCE, 2024, 78 (01):
  • [9] Next-Generation X-Ray Free-Electron Lasers
    Zholents, Alexander
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2012, 18 (01) : 248 - 257
  • [10] Analysis of Cerenkov free-electron lasers
    Kalkal, Yashvir
    Kumar, Vinit
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (03):