Adiabatic evolution of optical beams of arbitrary shapes in nonlocal nonlinear media

被引:3
作者
Che, Jiarui [1 ,2 ]
Zheng, Yuxin [1 ,2 ]
Liang, Guo [1 ,2 ]
Guo, Qi [1 ]
机构
[1] South China Normal Univ, Sch Informat & Optoelect Sci & Engn, Guangzhou 510631, Peoples R China
[2] Shangqiu Normal Univ, Sch Elect & Elect Engn, Shangqiu 476000, Peoples R China
关键词
nonlocal nonlinearity; variational approach; Hermite-Gaussian beam; SPATIAL SOLITONS;
D O I
10.1088/1674-1056/acd689
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss evolution of Hermite-Gaussian beams of different orders in nonlocal nonlinear media whose characteristic length is set as different functions of propagation distance, using the variational approach. It is proved that as long as the characteristic length varies slowly enough, all the Hermite-Gaussian beams can propagate adiabatically. When the characteristic length gradually comes back to its initial value after changes, all the Hermite-Gaussian beams can adiabatically restore to their own original states. The variational results agree well with the numerical simulations. Arbitrary shaped beams synthesized by Hermite-Gaussian modes can realize adiabatic evolution in nonlocal nonlinear media with gradual characteristic length.
引用
收藏
页数:6
相关论文
共 33 条
[1]   VARIATIONAL APPROACH TO NON-LINEAR PULSE-PROPAGATION IN OPTICAL FIBERS [J].
ANDERSON, D .
PHYSICAL REVIEW A, 1983, 27 (06) :3135-3145
[2]  
Assanto G., 2012, Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals, DOI [10.1002/9781118414637, DOI 10.1002/9781118414637]
[3]   Collapse arrest and soliton stabilization in nonlocal nonlinear media [J].
Bang, O ;
Krolikowski, W ;
Wyller, J ;
Rasmussen, JJ .
PHYSICAL REVIEW E, 2002, 66 (04) :5
[4]  
Boyd R, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[5]   Spiraling multivortex solitons in nonlocal nonlinear media [J].
Buccoliero, Daniel ;
Desyatnikov, Anton S. ;
Krolikowski, Wieslaw ;
Kivshar, Yuri S. .
OPTICS LETTERS, 2008, 33 (02) :198-200
[6]   Laguerre and Hermite soliton clusters in nonlocal nonlinear media [J].
Buccoliero, Daniel ;
Desyatnikov, Anton S. ;
Krolikowski, Wieslaw ;
Kivshar, Yuri S. .
PHYSICAL REVIEW LETTERS, 2007, 98 (05)
[7]   Coherent interactions of Airy beams and solitons in nonlocal nonlinear media [J].
Chen, Peng ;
Wang, Hongcheng ;
Chen, Manna ;
Zhang, Lifu .
OPTICS COMMUNICATIONS, 2020, 459
[8]   Collapse arrest in a two-dimensional Airy Gaussian beam and Airy Gaussian vortex beam in nonlocal nonlinear media [J].
Chen, Ye ;
Ge, Lijuan ;
Wang, Xinglin ;
Shen, Ming .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2022, 74 (02)
[9]   Observation of attraction between dark solitons [J].
Dreischuh, A ;
Neshev, DN ;
Petersen, DE ;
Bang, O ;
Krolikowski, W .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[10]   Optical beams in sub-strongly non-local nonlinear media: A variational solution [J].
Guo, Q ;
Luo, B ;
Chi, S .
OPTICS COMMUNICATIONS, 2006, 259 (01) :336-341