Continual Semantic Segmentation with Automatic Memory Sample Selection

被引:26
作者
Zhu, Lanyun [1 ]
Chen, Tianrun [2 ]
Yin, Jianxiong [3 ]
See, Simon [3 ]
Liu, Jun [1 ]
机构
[1] Singapore Univ Technol & Design, Singapore, Singapore
[2] Zhejiang Univ, Hangzhou, Peoples R China
[3] NVIDIA AI Tech Ctr, Santa Clara, CA USA
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/CVPR52729.2023.00301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual Semantic Segmentation (CSS) extends static semantic segmentation by incrementally introducing new classes for training. To alleviate the catastrophic forgetting issue in CSS, a memory buffer that stores a small number of samples from the previous classes is constructed for replay. However, existing methods select the memory samples either randomly or based on a single-factor-driven handcrafted strategy, which has no guarantee to be optimal. In this work, we propose a novel memory sample selection mechanism that selects informative samples for effective replay in a fully automatic way by considering comprehensive factors including sample diversity and class performance. Our mechanism regards the selection operation as a decision-making process and learns an optimal selection policy that directly maximizes the validation performance on a reward set. To facilitate the selection decision, we design a novel state representation and a dual-stage action space. Our extensive experiments on Pascal-VOC 2012 and ADE 20K datasets demonstrate the effectiveness of our approach with state-of-the-art (SOTA) performance achieved, outperforming the second-place one by 12.54% for the 6-stage setting on Pascal-VOC 2012.
引用
收藏
页码:3082 / 3092
页数:11
相关论文
共 57 条
[31]   Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations [J].
Michieli, Umberto ;
Zanuttigh, Pietro .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :1114-1124
[32]   Incremental Learning Techniques for Semantic Segmentation [J].
Michieli, Umberto ;
Zanuttigh, Pietro .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :3205-3212
[33]   Class Similarity Weighted Knowledge Distillation for Continual Semantic Segmentation [J].
Minh Hieu Phan ;
The-Anh Ta ;
Son Lam Phung ;
Long Tran-Thanh ;
Bouzerdoum, Abdesselam .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16845-16854
[34]  
PourKeshavarzi M., 2021, INT C LEARN REPR
[35]  
Qin Qi, 2021, ADV NEURAL INFORM PR, V34, P2
[36]  
Rebuffi Sylvestre-Alvise, 2017, PROC CVPR IEEE, P5533, DOI DOI 10.1109/CVPR.2017.587
[37]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[38]  
Shim DS, 2021, AAAI CONF ARTIF INTE, V35, P9630
[39]   Mastering the game of Go with deep neural networks and tree search [J].
Silver, David ;
Huang, Aja ;
Maddison, Chris J. ;
Guez, Arthur ;
Sifre, Laurent ;
van den Driessche, George ;
Schrittwieser, Julian ;
Antonoglou, Ioannis ;
Panneershelvam, Veda ;
Lanctot, Marc ;
Dieleman, Sander ;
Grewe, Dominik ;
Nham, John ;
Kalchbrenner, Nal ;
Sutskever, Ilya ;
Lillicrap, Timothy ;
Leach, Madeleine ;
Kavukcuoglu, Koray ;
Graepel, Thore ;
Hassabis, Demis .
NATURE, 2016, 529 (7587) :484-+
[40]   Segmenter: Transformer for Semantic Segmentation [J].
Strudel, Robin ;
Garcia, Ricardo ;
Laptev, Ivan ;
Schmid, Cordelia .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :7242-7252