Continual Semantic Segmentation with Automatic Memory Sample Selection

被引:26
作者
Zhu, Lanyun [1 ]
Chen, Tianrun [2 ]
Yin, Jianxiong [3 ]
See, Simon [3 ]
Liu, Jun [1 ]
机构
[1] Singapore Univ Technol & Design, Singapore, Singapore
[2] Zhejiang Univ, Hangzhou, Peoples R China
[3] NVIDIA AI Tech Ctr, Santa Clara, CA USA
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/CVPR52729.2023.00301
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual Semantic Segmentation (CSS) extends static semantic segmentation by incrementally introducing new classes for training. To alleviate the catastrophic forgetting issue in CSS, a memory buffer that stores a small number of samples from the previous classes is constructed for replay. However, existing methods select the memory samples either randomly or based on a single-factor-driven handcrafted strategy, which has no guarantee to be optimal. In this work, we propose a novel memory sample selection mechanism that selects informative samples for effective replay in a fully automatic way by considering comprehensive factors including sample diversity and class performance. Our mechanism regards the selection operation as a decision-making process and learns an optimal selection policy that directly maximizes the validation performance on a reward set. To facilitate the selection decision, we design a novel state representation and a dual-stage action space. Our extensive experiments on Pascal-VOC 2012 and ADE 20K datasets demonstrate the effectiveness of our approach with state-of-the-art (SOTA) performance achieved, outperforming the second-place one by 12.54% for the 6-stage setting on Pascal-VOC 2012.
引用
收藏
页码:3082 / 3092
页数:11
相关论文
共 57 条
[1]  
Aljundi R., 2019, Advances in neural information processing systems, V32
[2]   DECORE: Deep Compression with Reinforcement Learning [J].
Alwani, Manoj ;
Wang, Yang ;
Madhavan, Vashisht .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :12339-12349
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Rainbow Memory: Continual Learning with a Memory of Diverse Samples [J].
Bang, Jihwan ;
Kim, Heesu ;
Yoo, YoungJoon ;
Ha, Jung-Woo ;
Choi, Jonghyun .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8214-8223
[5]  
Borsos Z., 2020, Advances in neural information processing systems, V33, P14879, DOI DOI 10.48550/ARXIV.2006.03875
[6]   Modeling the Background for Incremental Learning in Semantic Segmentation [J].
Cermelli, Fabio ;
Mancini, Massimiliano ;
Bulo, Samuel Rota ;
Ricci, Elisa ;
Caputo, Barbara .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :9230-9239
[7]  
Cha Sungmin, 2021, Advances in Neural Information Processing Systems, V34, P10919
[8]   Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence [J].
Chaudhry, Arslan ;
Dokania, Puneet K. ;
Ajanthan, Thalaiyasingam ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 :556-572
[9]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[10]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709