Dual-energy CT-based radiomics in predicting EGFR mutation status non-invasively in lung adenocarcinoma

被引:7
作者
Ma, Jing-Wen [1 ,2 ]
Jiang, Xu [1 ]
Wang, Yan-Mei [3 ]
Jiang, Jiu-Ming [1 ]
Miao, Lei [1 ]
Qi, Lin -Lin [1 ]
Zhang, Jia-Xing [1 ]
Wen, Xin [1 ]
Li, Jian-Wei [1 ]
Li, Meng [1 ]
Zhang, Li [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Dept Diagnost Radiol, Beijing 100021, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, State Key Lab Cardiovasc Dis, Natl Clin Res Ctr Cardiovasc Dis,Dept Radiol, 167 Bei Li Shi St, Beijing 100037, Peoples R China
[3] GE Healthcare China, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
CT-based radiomics; Dual-energy spectral CT; EGFR mutation; Lung adenocarcinoma; Nomogram; SPECTRAL COMPUTED-TOMOGRAPHY; RECEPTOR GENE-MUTATIONS; CANCER; FEATURES; HETEROGENEITY; GEFITINIB;
D O I
10.1016/j.heliyon.2024.e24372
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Objectives: Patients with epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma (LUAD) can benefit from individualized targeted therapy. This study aims to develop, compare, analyse prediction models based on dual-energy spectral computed tomography (DESCT) and CT-based radiomic features to non-invasively predict EGFR mutation status in LUAD. Materials and methods: Patients with LUAD (n = 175), including 111 patients with and 64 patients without EGFR mutations, were enrolled in the current study. All patients were randomly divided into a training dataset (122 cases) and validation dataset (53 cases) at a ratio of 7:3. After extracting CT-based radiomic, DESCT and clinical features, we built seven prediction models and a nomogram of the best prediction. Receiver operating characteristic (ROC) curves and the mean area under the curve (AUC) values were used for comparisons among the models to obtain the best prediction model for predicting EGFR mutations. Results: The best distinguishing ability is the combined model incorporating radiomic, DESCT and clinical features for predicting the EGFR mutation status with an AUC of 0.86 (95 % CI: 0.79-0.92) in the training group and an AUC value of 0.83 (95 % CI: 0.73, 0.96) in the validation group. Conclusions: Our study provides a predictive nomogram non-invasively with a combination of CTbased radiomic, DESCT and clinical features, which can provide image-based biological information for targeted therapy of LUAD with EGFR mutations.
引用
收藏
页数:8
相关论文
共 34 条
[1]   CT radiomics-based prediction of anaplastic lymphoma kinase and epidermal growth factor receptor mutations in lung adenocarcinoma [J].
Choe, Jooae ;
Lee, Sang Min ;
Kim, Wooil ;
Do, Kyung-Hyun ;
Kim, Seonok ;
Choi, Sehoon ;
Seo, Joon Beom .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 139
[2]   Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment [J].
Duma, Narjust ;
Santana-Davila, Rafael ;
Molina, Julian R. .
MAYO CLINIC PROCEEDINGS, 2019, 94 (08) :1623-1640
[3]   Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival [J].
Ganeshan, Balaji ;
Panayiotou, Elleny ;
Burnand, Kate ;
Dizdarevic, Sabina ;
Miles, Ken .
EUROPEAN RADIOLOGY, 2012, 22 (04) :796-802
[4]   Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing [J].
Gerlinger, Marco ;
Rowan, Andrew J. ;
Horswell, Stuart ;
Larkin, James ;
Endesfelder, David ;
Gronroos, Eva ;
Martinez, Pierre ;
Matthews, Nicholas ;
Stewart, Aengus ;
Tarpey, Patrick ;
Varela, Ignacio ;
Phillimore, Benjamin ;
Begum, Sharmin ;
McDonald, Neil Q. ;
Butler, Adam ;
Jones, David ;
Raine, Keiran ;
Latimer, Calli ;
Santos, Claudio R. ;
Nohadani, Mahrokh ;
Eklund, Aron C. ;
Spencer-Dene, Bradley ;
Clark, Graham ;
Pickering, Lisa ;
Stamp, Gordon ;
Gore, Martin ;
Szallasi, Zoltan ;
Downward, Julian ;
Futreal, P. Andrew ;
Swanton, Charles .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (10) :883-892
[5]   Radiomics Signature as a Predictive Factor for EGFR Mutations in Advanced Lung Adenocarcinoma [J].
Hong, Duo ;
Xu, Ke ;
Zhang, Lina ;
Wan, Xiaoting ;
Guo, Yan .
FRONTIERS IN ONCOLOGY, 2020, 10
[6]   Identifying EGFR mutations in lung adenocarcinoma by noninvasive imaging using radiomics features and random forest modeling [J].
Jia, Tian-Ying ;
Xiong, Jun-Feng ;
Li, Xiao-Yang ;
Yu, Wen ;
Xu, Zhi-Yong ;
Cai, Xu-Wei ;
Ma, Jing-Chen ;
Ren, Ya-Cheng ;
Larsson, Rasmus ;
Zhang, Jie ;
Zhao, Jun ;
Fu, Xiao-Long .
EUROPEAN RADIOLOGY, 2019, 29 (09) :4742-4750
[7]   Stability of MRI radiomic features according to various imaging parameters in fast scanned T2-FLAIR for acute ischemic stroke patients [J].
Joo, Leehi ;
Jung, Seung Chai ;
Lee, Hyunna ;
Park, Seo Young ;
Kim, Minjae ;
Park, Ji Eun ;
Choi, Keum Mi .
SCIENTIFIC REPORTS, 2021, 11 (01)
[8]   Dual-Energy Computed Tomography Virtual Monoenergetic Imaging of Lung Cancer: Assessment of Optimal Energy Levels [J].
Kaup, Moritz ;
Scholtz, Jan-Erik ;
Engler, Alexander ;
Albrecht, Moritz H. ;
Bauer, Ralf W. ;
Kerl, J. Matthias ;
Beeres, Martin ;
Lehnert, Thomas ;
Vogl, Thomas J. ;
Wichmann, Julian L. .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2016, 40 (01) :80-85
[9]   Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging [J].
Kim, Cherry ;
Kim, Wooil ;
Park, Sung-Joon ;
Lee, Young Hen ;
Hwang, Sung Ho ;
Yong, Hwan Seok ;
Oh, Yu-Whan ;
Kang, Eun-Young ;
Lee, Ki Yeol .
KOREAN JOURNAL OF RADIOLOGY, 2020, 21 (07) :838-850
[10]   Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer [J].
Kohno, Takashi ;
Nakaoku, Takashi ;
Tsuta, Koji ;
Tsuchihara, Katsuya ;
Matsumoto, Shingo ;
Yoh, Kiyotaka ;
Goto, Koichi .
TRANSLATIONAL LUNG CANCER RESEARCH, 2015, 4 (02) :156-164