How good are AlphaFold models for docking-based virtual screening?

被引:68
|
作者
Scardino, Valeria [1 ,2 ]
Di Filippo, Juan I. [2 ,3 ]
Cavasotto, Claudio N. [2 ,3 ,4 ]
机构
[1] Meton AI Inc, Wilmington, DE 19801 USA
[2] Univ Austral, Austral Inst Appl Artificial Intelligence, Pilar, Buenos Aires, Argentina
[3] Univ Austral, Computat Drug Design & Biomed Informat Lab, Inst Invest Med Traslac IIMT, CONICET, Pilar, Buenos Aires, Argentina
[4] Univ Austral, Fac Ciencias Biomed, Fac Ingn, Pilar, Buenos Aires, Argentina
关键词
PROTEIN-LIGAND DOCKING; STRUCTURE PREDICTION; FLEXIBILITY; DISCOVERY; ACCURACY; SETS;
D O I
10.1016/j.isci.2022.105920
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A crucial component in structure-based drug discovery is the availability of high -quality three-dimensional structures of the protein target. Whenever experi-mental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based pro-tein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corre-sponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking pro-grams and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement stra-tegies might be key to increase the chances of success.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Fragment docking-based pharmacophore screening
    Sherman, B. Woody
    Dixon, Steven L.
    Farid, Ramy
    Repasky, Matthew P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232 : 70 - 70
  • [22] Enhancing Scoring Performance of Docking-Based Virtual Screening Through Machine Learning
    Silva, Candida G.
    Simoes, Carlos J. V.
    Carreiras, Pedro
    Brito, Rui M. M.
    CURRENT BIOINFORMATICS, 2016, 11 (04) : 408 - 420
  • [23] Discovery of small-molecule modulators of melanogenesis by docking-based virtual screening
    Abudureyimu, Miernisha
    Zang, Deng
    Talifu, Ainiwaer
    Zhu, Weiliang
    Aisa, Haji Akber
    FUTURE MEDICINAL CHEMISTRY, 2022, 14 (04) : 221 - 231
  • [24] Molecular docking-based computational platform for high-throughput virtual screening
    Zhang, Baohua
    Li, Hui
    Yu, Kunqian
    Jin, Zhong
    CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2022, 4 (01) : 63 - 74
  • [25] A Comparison between Enrichment Optimization Algorithm (EOA)-Based and Docking-Based Virtual Screening
    Spiegel, Jacob
    Senderowitz, Hanoch
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (01)
  • [26] Molecular docking-based computational platform for high-throughput virtual screening
    Baohua Zhang
    Hui Li
    Kunqian Yu
    Zhong Jin
    CCF Transactions on High Performance Computing, 2022, 4 : 63 - 74
  • [27] A Combination of Pharmacophore and Docking-based Virtual Screening to Discover new Tyrosinase Inhibitors
    Vittorio, Serena
    Seidel, Thomas
    Germano, Maria Paola
    Gitto, Rosaria
    Ielo, Laura
    Garon, Arthur
    Rapisarda, Antonio
    Pace, Vittorio
    Langer, Thierry
    De Luca, Laura
    MOLECULAR INFORMATICS, 2020, 39 (03)
  • [28] Discovery of Ligands for ADP-Ribosyltransferases via Docking-Based Virtual Screening
    Andersson, C. David
    Karlberg, Tobias
    Ekblad, Torun
    Lindgren, Anders E. G.
    Thorsell, Ann-Gerd
    Spjut, Sara
    Uciechowska, Urszula
    Niemiec, Moritz S.
    Wittung-Stafshede, Pernilla
    Weigelt, Johan
    Elofsson, Mikael
    Schuler, Herwig
    Linusson, Anna
    JOURNAL OF MEDICINAL CHEMISTRY, 2012, 55 (17) : 7706 - 7718
  • [29] Assessment and optimization of docking-based virtual screening for GPCR ligands: Not only crystal structures but also homology models
    Costanzi, Stefano
    Vilar, Santiago
    Ferino, Giulio
    Phatak, Sharangdhar S.
    Berk, Barkin
    Cavasotto, Claudio N.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [30] Identification of PDZ ligands by docking-based virtual screening for the development of novel analgesic agents
    Bouzidi, Naoual
    Deokar, Hemantkumar
    Vogrig, Alexandre
    Boucherle, Benjamin
    Ripoche, Isabelle
    Abrunhosa-Thomas, Isabelle
    Dorr, Liam
    Wattiez, Anne-Sophie
    Lian, Lu-Yun
    Marin, Philippe
    Courteix, Christine
    Ducki, Sylvie
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2013, 23 (09) : 2624 - 2627