How good are AlphaFold models for docking-based virtual screening?

被引:78
作者
Scardino, Valeria [1 ,2 ]
Di Filippo, Juan I. [2 ,3 ]
Cavasotto, Claudio N. [2 ,3 ,4 ]
机构
[1] Meton AI Inc, Wilmington, DE 19801 USA
[2] Univ Austral, Austral Inst Appl Artificial Intelligence, Pilar, Buenos Aires, Argentina
[3] Univ Austral, Computat Drug Design & Biomed Informat Lab, Inst Invest Med Traslac IIMT, CONICET, Pilar, Buenos Aires, Argentina
[4] Univ Austral, Fac Ciencias Biomed, Fac Ingn, Pilar, Buenos Aires, Argentina
关键词
PROTEIN-LIGAND DOCKING; STRUCTURE PREDICTION; FLEXIBILITY; DISCOVERY; ACCURACY; SETS;
D O I
10.1016/j.isci.2022.105920
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A crucial component in structure-based drug discovery is the availability of high -quality three-dimensional structures of the protein target. Whenever experi-mental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based pro-tein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corre-sponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking pro-grams and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement stra-tegies might be key to increase the chances of success.
引用
收藏
页数:18
相关论文
共 70 条
[1]   ICM - A NEW METHOD FOR PROTEIN MODELING AND DESIGN - APPLICATIONS TO DOCKING AND STRUCTURE PREDICTION FROM THE DISTORTED NATIVE CONFORMATION [J].
ABAGYAN, R ;
TOTROV, M ;
KUZNETSOV, D .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (05) :488-506
[2]  
Akdel M, 2021, bioRxiv, DOI [10.1101/2021.09.26.461876, 10.1101/2021.09.26.461876, DOI 10.1101/2021.09.26.461876]
[3]   Are the Apo Proteins Suitable for the Rational Discovery of Allosteric Drugs? [J].
An, Xiaoli ;
Lu, Shaoyong ;
Song, Kun ;
Shen, Qiancheng ;
Huang, Meilan ;
Yao, Xiaojun ;
Liu, Huanxiang ;
Zhang, Jian .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (01) :597-604
[4]   The Protein Data Bank [J].
Berman, HM ;
Battistuz, T ;
Bhat, TN ;
Bluhm, WF ;
Bourne, PE ;
Burkhardt, K ;
Iype, L ;
Jain, S ;
Fagan, P ;
Marvin, J ;
Padilla, D ;
Ravichandran, V ;
Schneider, B ;
Thanki, N ;
Weissig, H ;
Westbrook, JD ;
Zardecki, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :899-907
[5]   Are Deep Learning Structural Models Sufficiently Accurate for Free- Energy Calculations? Application of FEP plus to AlphaFold2-Predicted Structures [J].
Beuming, Thijs ;
Martin, Helena ;
Diaz-Rovira, Anna M. ;
Diaz, Lucia ;
Guallar, Victor ;
Ray, Soumya S. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, :4351-4360
[6]   Predicting the Accuracy of Protein-Ligand Docking on Homology Models [J].
Bordogna, Annalisa ;
Pandini, Alessandro ;
Bonati, Laura .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) :81-98
[7]   Improved prediction of protein-protein interactions using AlphaFold2 [J].
Bryant, P. ;
Pozzati, G. ;
Elofsson, A. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]  
Cavasotto C.N., 2008, J MED CHEM
[9]   High-Throughput Docking Using Quantum Mechanical Scoring [J].
Cavasotto, Claudio N. ;
Aucar, M. Gabriela .
FRONTIERS IN CHEMISTRY, 2020, 8
[10]   Computational chemistry in drug lead discovery and design [J].
Cavasotto, Claudio N. ;
Gabriela Aucar, Maria ;
Adler, Natalia S. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2019, 119 (02)