Liquid spherical shells are a non-equilibrium steady state of active droplets

被引:29
|
作者
Bergmann, Alexander M. [1 ]
Bauermann, Jonathan [2 ,3 ]
Bartolucci, Giacomo [2 ,3 ]
Donau, Carsten [1 ]
Stasi, Michele [1 ]
Holtmannspoetter, Anna-Lena [1 ]
Juelicher, Frank [2 ,3 ,4 ]
Weber, Christoph A. [5 ]
Boekhoven, Job [1 ]
机构
[1] Tech Univ Munich, Sch Nat Sci, Dept Chem, Lichtenbergstr 4, D-85748 Garching, Germany
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Ctr Syst Biol Dresden, Pfotenhauerstr 108, D-01307 Dresden, Germany
[4] Tech Univ Dresden, Cluster Excellence Phys Life, D-01307 Dresden, Germany
[5] Univ Augsburg, Inst Phys, Fac Math Nat Sci & Mat Engn, Univ Str 1, D-86159 Augsburg, Germany
基金
欧洲研究理事会;
关键词
PHASE-TRANSITION; COMPLEX COACERVATION; MICRODROPLETS; SEPARATION; MODEL; DNA;
D O I
10.1038/s41467-023-42344-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Liquid-liquid phase separation yields spherical droplets that eventually coarsen to one large, stable droplet governed by the principle of minimal free energy. In chemically fueled phase separation, the formation of phase-separating molecules is coupled to a fuel-driven, non-equilibrium reaction cycle. It thus yields dissipative structures sustained by a continuous fuel conversion. Such dissipative structures are ubiquitous in biology but are poorly understood as they are governed by non-equilibrium thermodynamics. Here, we bridge the gap between passive, close-to-equilibrium, and active, dissipative structures with chemically fueled phase separation. We observe that spherical, active droplets can undergo a morphological transition into a liquid, spherical shell. We demonstrate that the mechanism is related to gradients of short-lived droplet material. We characterize how far out of equilibrium the spherical shell state is and the chemical power necessary to sustain it. Our work suggests alternative avenues for assembling complex stable morphologies, which might already be exploited to form membraneless organelles by cells.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Classical Orbital Paramagnetism in Non-equilibrium Steady State
    Deshpande, Avinash A.
    Kumar, N.
    JOURNAL OF ASTROPHYSICS AND ASTRONOMY, 2017, 38 (03)
  • [12] Classical Orbital Paramagnetism in Non-equilibrium Steady State
    Avinash A. Deshpande
    N. Kumar
    Journal of Astrophysics and Astronomy, 2017, 38
  • [13] Non-equilibrium vibrational steady state in chemisorption and catalysis
    Tomellini, M
    SURFACE SCIENCE, 2003, 544 (2-3) : 209 - 219
  • [14] THE SOLUTION OF THE STEADY STATE DISTRIBUTION IN NON-EQUILIBRIUM PROCESSES
    MEIJER, PHE
    BOWEN, JI
    PHYSICA, 1960, 26 (07): : 478 - 484
  • [15] Non-equilibrium steady states
    Nicolas, J
    QUANTUM LIMITS TO THE SECOND LAW, 2002, 643 : 494 - 499
  • [16] LIGHT-SCATTERING IN NEMATIC LIQUID-CRYSTALS IN A NON-EQUILIBRIUM STEADY-STATE
    PLEINER, H
    BRAND, H
    PHYSICAL REVIEW A, 1983, 27 (02): : 1177 - 1183
  • [17] FLUCTUATIONS IN A NON-EQUILIBRIUM STEADY-STATE - BASIC EQUATIONS
    KIRKPATRICK, TR
    COHEN, EGD
    DORFMAN, JR
    PHYSICAL REVIEW A, 1982, 26 (02): : 950 - 971
  • [18] Thermodynamic analysis of adsorption process at a non-equilibrium steady state
    WANG LiNing & MIN JingChun* School of Aerospace
    Science Bulletin, 2010, (31) : 3619 - 3625
  • [19] Thermodynamic analysis of adsorption process at a non-equilibrium steady state
    Wang LiNing
    Min JingChun
    CHINESE SCIENCE BULLETIN, 2010, 55 (31): : 3619 - 3625
  • [20] Non-equilibrium steady state transitions in a model actin cortex
    Tan, T.
    Garb, M. Malik
    Abu-Shah, E.
    Li, J.
    Sharma, A.
    McKintosh, F.
    Keren, K.
    Fakhri, N.
    Schmidt, C.
    FEBS JOURNAL, 2016, 283 : 22 - 22