Liquid spherical shells are a non-equilibrium steady state of active droplets

被引:29
|
作者
Bergmann, Alexander M. [1 ]
Bauermann, Jonathan [2 ,3 ]
Bartolucci, Giacomo [2 ,3 ]
Donau, Carsten [1 ]
Stasi, Michele [1 ]
Holtmannspoetter, Anna-Lena [1 ]
Juelicher, Frank [2 ,3 ,4 ]
Weber, Christoph A. [5 ]
Boekhoven, Job [1 ]
机构
[1] Tech Univ Munich, Sch Nat Sci, Dept Chem, Lichtenbergstr 4, D-85748 Garching, Germany
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Ctr Syst Biol Dresden, Pfotenhauerstr 108, D-01307 Dresden, Germany
[4] Tech Univ Dresden, Cluster Excellence Phys Life, D-01307 Dresden, Germany
[5] Univ Augsburg, Inst Phys, Fac Math Nat Sci & Mat Engn, Univ Str 1, D-86159 Augsburg, Germany
基金
欧洲研究理事会;
关键词
PHASE-TRANSITION; COMPLEX COACERVATION; MICRODROPLETS; SEPARATION; MODEL; DNA;
D O I
10.1038/s41467-023-42344-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Liquid-liquid phase separation yields spherical droplets that eventually coarsen to one large, stable droplet governed by the principle of minimal free energy. In chemically fueled phase separation, the formation of phase-separating molecules is coupled to a fuel-driven, non-equilibrium reaction cycle. It thus yields dissipative structures sustained by a continuous fuel conversion. Such dissipative structures are ubiquitous in biology but are poorly understood as they are governed by non-equilibrium thermodynamics. Here, we bridge the gap between passive, close-to-equilibrium, and active, dissipative structures with chemically fueled phase separation. We observe that spherical, active droplets can undergo a morphological transition into a liquid, spherical shell. We demonstrate that the mechanism is related to gradients of short-lived droplet material. We characterize how far out of equilibrium the spherical shell state is and the chemical power necessary to sustain it. Our work suggests alternative avenues for assembling complex stable morphologies, which might already be exploited to form membraneless organelles by cells.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Liquid spherical shells are a non-equilibrium steady state of active droplets
    Alexander M. Bergmann
    Jonathan Bauermann
    Giacomo Bartolucci
    Carsten Donau
    Michele Stasi
    Anna-Lena Holtmannspötter
    Frank Jülicher
    Christoph A. Weber
    Job Boekhoven
    Nature Communications, 14
  • [2] Luttinger liquid in a non-equilibrium steady state
    Mintchev, Mihail
    Sorba, Paul
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (09)
  • [3] Approach to a non-equilibrium steady state
    Plasecki, Jaroslaw
    Soto, Rodrigo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (02) : 379 - 386
  • [4] Non-equilibrium steady state in the hydro regime
    Pourhasan, Razieh
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (02): : 1 - 15
  • [5] Equilibrium state and non-equilibrium steady state in an isolated human system
    郑文智
    梁源
    黄吉平
    Frontiers of Physics, 2014, 9 (01) : 128 - 135
  • [6] Non-equilibrium steady state of sparse systems
    Hurowitz, D.
    Cohen, D.
    EPL, 2011, 93 (06)
  • [7] Non-equilibrium steady state in the hydro regime
    Razieh Pourhasan
    Journal of High Energy Physics, 2016
  • [8] Equilibrium state and non-equilibrium steady state in an isolated human system
    Wen-Zhi Zheng
    Yuan Liang
    Ji-Ping Huang
    Frontiers of Physics, 2014, 9 : 128 - 135
  • [9] Equilibrium state and non-equilibrium steady state in an isolated human system
    Zheng, Wen-Zhi
    Liang, Yuan
    Huang, Ji-Ping
    FRONTIERS OF PHYSICS, 2014, 9 (01) : 128 - 135
  • [10] Quantum reciprocity conjecture for the non-equilibrium steady state
    Coleman, P
    Mao, W
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (20) : L263 - L269