Linear strands of multigraded free resolutions

被引:1
作者
Brown, Michael K. [1 ]
Erman, Daniel [2 ]
机构
[1] Auburn Univ, Dept Math, 221 Roosevelt Con, Auburn, AL 36849 USA
[2] Univ Hawaii Manoa, Dept Math, 2565, McCarthy Mall, Honolulu, HI 96822 USA
关键词
SYZYGIES; CONJECTURE; COHOMOLOGY;
D O I
10.1007/s00208-024-02803-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a notion of linear strands for multigraded free resolutions, and we prove a multigraded generalization of Green's Linear Syzygy Theorem.
引用
收藏
页码:2707 / 2725
页数:19
相关论文
共 36 条
[1]   BGG CORRESPONDENCE FOR TORIC COMPLETE INTERSECTIONS [J].
Baranovsky, Vladimir .
MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (04) :581-599
[2]  
Beilinson AlexanderA., 1978, Functional Analysis and Its Applications, V12, P214
[3]  
Berkesch C., 2021, Sem. Lothar. Combin., V85B, P13
[4]   Virtual resolutions for a product of projective spaces [J].
Berkesch, Christine ;
Erman, Daniel ;
Smith, Gregory G. .
ALGEBRAIC GEOMETRY, 2020, 7 (04) :460-481
[5]  
Bernstein I.N., 1978, Funct Anal. and Appl, V12, P212
[6]   Castelnuovo Mumford regularity with respect to multigraded ideals [J].
Botbol, Nicolas ;
Chardin, Marc .
JOURNAL OF ALGEBRA, 2017, 474 :361-392
[7]  
Brown M.K., 2023, ARXIV
[8]   Positivity and nonstandard graded Betti numbers [J].
Brown, Michael K. ;
Erman, Daniel .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (01) :111-123
[9]  
Brown MK., 2021, J EUR MATH SOC
[10]  
Brown MK., 2022, ALGEBRA NUMBER THEOR