Infinite dimensional Piecewise Deterministic Markov Processes

被引:0
作者
Dobson, Paul [1 ]
Bierkens, Joris [2 ]
机构
[1] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Scotland
[2] Delft Univ Technol, Delft Inst Appl Math, Mekelweg 4, NL-2628 CD Delft, Netherlands
基金
荷兰研究理事会;
关键词
Piecewise Deterministic Markov Processes; Infinite Dimensional Stochastic Process; Hypocoercivity; Uniform in time approximation; HYPOCOERCIVITY; EQUATIONS;
D O I
10.1016/j.spa.2023.08.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we aim to construct infinite dimensional versions of well established Piecewise Deterministic Monte Carlo methods, such as the Bouncy Particle Sampler, the Zig-Zag Sampler and the Boomerang Sampler. In order to do so we provide an abstract infinite dimensional framework for Piecewise Deterministic Markov Processes (PDMPs) with unbounded event intensities. We further develop exponential convergence to equilibrium of the infinite dimensional Boomerang Sampler, using hypocoercivity techniques. Furthermore we establish how the infinite dimensional Boomerang Sampler admits a finite dimensional approximation, rendering it suitable for computer simulation.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
引用
收藏
页码:337 / 396
页数:60
相关论文
共 29 条
[1]   HYPOCOERCIVITY OF PIECEWISE DETERMINISTIC MARKOV PROCESS-MONTE CARLO [J].
Andrieu, Christophe ;
Durmus, Alain ;
Nusken, Nikolas ;
Roussel, Julien .
ANNALS OF APPLIED PROBABILITY, 2021, 31 (05) :2478-2517
[2]   PESKUN-TIERNEY ORDERING FOR MARKOVIAN MONTE CARLO: BEYOND THE REVERSIBLE SCENARIO [J].
Andrieu, Christophe ;
Livingstone, Samuel .
ANNALS OF STATISTICS, 2021, 49 (04) :1958-1981
[3]   Subgeometric hypocoercivity for piecewise-deterministic Markov process Monte Carlo methods [J].
Andrieu, Christophe ;
Dobson, Paul ;
Wang, Andi Q. .
ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
[4]   A simple proof of the Poincare inequality for a large class of probability measures including the log-concave case [J].
Bakry, Dominique ;
Barthe, Franck ;
Cattiaux, Patrick ;
Guillin, Arnaud .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :60-66
[5]   FAST NON-MEAN-FIELD NETWORKS: UNIFORM IN TIME AVERAGING [J].
Barre, Julien ;
Dobson, Paul ;
Ottobre, Michela ;
Zatorska, Ewelina .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) :937-972
[6]   MCMC methods for diffusion bridges [J].
Beskos, Alexandros ;
Roberts, Gareth ;
Stuart, Andrew ;
Voss, Jochen .
STOCHASTICS AND DYNAMICS, 2008, 8 (03) :319-350
[7]  
Bierkens J., 2020, International conference on machine learning. PMLR, P908
[8]   LIMIT THEOREMS FOR THE ZIG-ZAG PROCESS [J].
Bierkens, Joris ;
Duncan, Andrew .
ADVANCES IN APPLIED PROBABILITY, 2017, 49 (03) :791-825
[9]   The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method [J].
Bouchard-Cote, Alexandre ;
Vollmer, Sebastian J. ;
Doucet, Arnaud .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (522) :855-867
[10]   UNIFORM IN TIME ESTIMATES FOR THE WEAK ERROR OF THE EULER METHOD FOR SDES AND A PATHWISE APPROACH TO DERIVATIVE ESTIMATES FOR DIFFUSION SEMIGROUPS [J].
Crisan, D. ;
Dobson, P. ;
Ottobre, M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) :3289-3330