Representation type of cyclotomic quiver Hecke algebras of type Al(1)

被引:1
作者
Ariki, Susumu [1 ]
Song, Linliang [2 ]
Wang, Qi [3 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, 1-5 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[3] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
Dominant maximal weights; Ariki-Koike algebras; KLR algebras; Brauer graph algebras; Representation type; Derived equivalence; DECOMPOSITION NUMBERS; EQUIVALENCES; MODULES;
D O I
10.1016/j.aim.2023.109329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first investigate a connected quiver consisting of all dominant maximal weights for an integrable highest weight module in affine type A. This quiver provides an efficient method to obtain all dominant maximal weights. Then, we completely determine the representation type of cyclotomic Khovanov-Lauda-Rouquier algebras of arbitrary level in affine type A, by using the quiver we construct. This result gives a complete classification for the representation type of blocks of cyclotomic Hecke algebras since cyclotomic KLR algebras of type A(l)((1)) form a one-parameter family and cyclotomic Hecke algebras occur at a special parameter, i.e., t =-2 if l = 1 and t =(-1)(l+1) if l >= 2. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:68
相关论文
共 39 条
[31]   CRYSTAL BASE FOR THE BASIC REPRESENTATION OF UQ(SL(N)) [J].
MISRA, KC ;
MIWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 134 (01) :79-88
[32]   Derived equivalence classification of Brauer graph algebras [J].
Opper, Sebastian ;
Zvonareva, Alexandra .
ADVANCES IN MATHEMATICS, 2022, 402
[33]  
RICKARD J, 1991, J LOND MATH SOC, V43, P37
[34]  
Ringel C.M., 1975, Lecture Notes in Mathematics, V488
[35]   Picard groups for derived module categories [J].
Rouquier, R ;
Zimmermann, A .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 :197-225
[36]  
Rouquier R., 2008, ARXIV08125023
[37]  
Schroll Sibylle., 2018, Homological Methods, Representation Theory, and Cluster Algebras, P177
[38]  
Tsuchioka S., 2009, Res. Inst. Math. Sci
[39]  
Xi C.C., 2006, ADV SCH C REPRESENTA