Norms of Maximal Functions Between Generalized and Classical Lorentz Spaces

被引:0
|
作者
Mustafayev, R. [1 ,2 ]
Bilgicli, N. [3 ]
Gorgulu, M.
机构
[1] Azerbaijan State Oil & Ind Univ, French Azerbaijani Univ UFAZ, Math Dept, Baku, Azerbaijan
[2] Karamanoglu Mehmetbey Univ, Dept Math, TR-70200 Karaman, Turkiye
[3] Kirikkale High Sch, Republ Turkey Minist Natl Educ, TR-71100 Kirikkale, Turkiye
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2023年 / 13卷 / 02期
关键词
generalized maximal functions; classical and generalized Lorentz spaces; iterated Hardy inequalities involving suprema; weights; REAL INTERPOLATION; LEBESGUE SPACES; BOUNDEDNESS; EMBEDDINGS; OPERATORS; REARRANGEMENT; INEQUALITIES;
D O I
10.59849/2218-6816.2023.2.51
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to find the norm of the generalized maximal operator M.,.a(b), defined for all measurable functions f on R-n, with 0 < alpha < infinity and functions b, phi : (0, infinity) -> (0, infinity), by M(phi, Lambda alpha(b))f(x) := sup (Q(sic)x) ||f chi Q||Lambda(alpha)(b)/phi(|Q|), x is an element of R-n, from generalized Lorentz spaces G Gamma(p, m, v) into classical Lorentz spaces Lambda(q)(w). In order to achieve the goal, we reduce the problem to the solution of the inequality (integral(infinity)(0) [T(u,b)f *(y)](q) w(y) dy)(1/q) <= C (integral(infinity)(0) (integral(x)(0) [f *(s)]p ds) (m/p) v(x) dx)(1/m) where w and v are weight functions on (0,infinity). Here f* is the non-increasing rearrangement of a measurable function f defined on R-n and T-u,T- b is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function g on (0,infinity) by (T(u,b)g)(t) := sup(tau is an element of[t,infinity)) u(tau)/B(tau) integral(tau)(0) g(s)b(s) ds, t is an element of(0,infinity), where u and b are weight functions on (0,infinity) such that u is continuous on (0,infinity) and the function B(t) := integral(t)(0) b(s) ds satisfies 0 < B(t) < infinity for every t is an element of (0,infinity).
引用
收藏
页码:51 / 99
页数:49
相关论文
共 50 条
  • [41] Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent
    Futamura, Toshihide
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 391 - 417
  • [42] Commutators of maximal functions on spaces of homogeneous type and their weighted, local versions
    Fu, Zunwei
    Pozzi, Elodie
    Wu, Qingyan
    FRONTIERS OF MATHEMATICS IN CHINA, 2022, 17 (04) : 625 - 652
  • [43] The boundedness of the generalized anisotropic potentials with rough kernels in the Lorentz spaces
    Guliyev, Vagif S.
    Serbetci, Ayhan
    Ekincioglu, Ismail
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (12) : 919 - 935
  • [44] Essential norms of generalized composition operators between Bloch-type spaces in the unit ball
    Chen, Cui
    Zhou, Ze-Hua
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (05) : 696 - 706
  • [45] Characterizations for the fractional maximal operators on Carleson curves in local generalized Morrey spaces
    Armutcu, Hatice
    Eroglu, Ahmet
    Isayev, Fatai
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (01) : 23 - 38
  • [46] Fractional maximal operator in the local Morrey-Lorentz spaces and some applications
    Guliyev, V. S.
    Aykol, C.
    Kucukaslan, A.
    Serbetci, A.
    AFRIKA MATEMATIKA, 2024, 35 (01)
  • [47] FRACTIONAL MAXIMAL OPERATOR AND FRACTIONAL INTEGRAL OPERATOR ON ORLICZ-LORENTZ SPACES
    Li, Hongliang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 15 - 31
  • [48] Estimates of difference norms for functions in anisotropic Sobolev spaces
    Kolyada, VI
    Pérez, FJ
    MATHEMATISCHE NACHRICHTEN, 2004, 267 : 46 - 64
  • [49] Ulyanov-type Inequalities Between Lorentz-Zygmund Spaces
    Gogatishvili, Amiran
    Opic, Bohumir
    Tikhonov, Sergey
    Trebels, Walter
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (05) : 1020 - 1049
  • [50] Regularity of maximal functions on Hardy-Sobolev spaces
    Perez, Carlos
    Picon, Tiago
    Saari, Olli
    Sousa, Mateus
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (06) : 1007 - 1015