Norms of Maximal Functions Between Generalized and Classical Lorentz Spaces

被引:0
|
作者
Mustafayev, R. [1 ,2 ]
Bilgicli, N. [3 ]
Gorgulu, M.
机构
[1] Azerbaijan State Oil & Ind Univ, French Azerbaijani Univ UFAZ, Math Dept, Baku, Azerbaijan
[2] Karamanoglu Mehmetbey Univ, Dept Math, TR-70200 Karaman, Turkiye
[3] Kirikkale High Sch, Republ Turkey Minist Natl Educ, TR-71100 Kirikkale, Turkiye
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2023年 / 13卷 / 02期
关键词
generalized maximal functions; classical and generalized Lorentz spaces; iterated Hardy inequalities involving suprema; weights; REAL INTERPOLATION; LEBESGUE SPACES; BOUNDEDNESS; EMBEDDINGS; OPERATORS; REARRANGEMENT; INEQUALITIES;
D O I
10.59849/2218-6816.2023.2.51
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to find the norm of the generalized maximal operator M.,.a(b), defined for all measurable functions f on R-n, with 0 < alpha < infinity and functions b, phi : (0, infinity) -> (0, infinity), by M(phi, Lambda alpha(b))f(x) := sup (Q(sic)x) ||f chi Q||Lambda(alpha)(b)/phi(|Q|), x is an element of R-n, from generalized Lorentz spaces G Gamma(p, m, v) into classical Lorentz spaces Lambda(q)(w). In order to achieve the goal, we reduce the problem to the solution of the inequality (integral(infinity)(0) [T(u,b)f *(y)](q) w(y) dy)(1/q) <= C (integral(infinity)(0) (integral(x)(0) [f *(s)]p ds) (m/p) v(x) dx)(1/m) where w and v are weight functions on (0,infinity). Here f* is the non-increasing rearrangement of a measurable function f defined on R-n and T-u,T- b is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function g on (0,infinity) by (T(u,b)g)(t) := sup(tau is an element of[t,infinity)) u(tau)/B(tau) integral(tau)(0) g(s)b(s) ds, t is an element of(0,infinity), where u and b are weight functions on (0,infinity) such that u is continuous on (0,infinity) and the function B(t) := integral(t)(0) b(s) ds satisfies 0 < B(t) < infinity for every t is an element of (0,infinity).
引用
收藏
页码:51 / 99
页数:49
相关论文
共 50 条
  • [21] Weighted Strong-Type Estimates on Classical Lorentz Spaces
    Baena-Miret, Sergi
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)
  • [22] Interpolation of variable Hardy-Lorentz-Karamata spaces associated with rearrangement functions
    Hao, Zhiwei
    Li, Libo
    Weisz, Ferenc
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (02)
  • [23] COMMUTATORS OF THE MAXIMAL FUNCTIONS ON BANACH FUNCTION SPACES
    Agcayazi, Mujdat
    Zhang, Pu
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1391 - 1408
  • [24] TRIGONOMETRIC APPROXIMATION BY ANGLE IN CLASSICAL WEIGHTED LORENTZ AND GRAND LORENTZ SPACES
    Kokilashvili, Vakhtang
    Tsanava, Tsira
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2019, 173 (03) : 163 - 166
  • [25] Generalized Hilbert operators acting on weighted spaces of holomorphic functions with sup-norms
    Beltran-Meneu, Maria J.
    Bonet, Jose
    Jorda, Enrique
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2025, 19 (01)
  • [26] The maximal operator on generalized Orlicz spaces
    Hasto, Peter A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (12) : 4038 - 4048
  • [27] Hardy-Littlewood maximal operators and generalized Orlicz spaces on measure spaces
    Zhou, Haiyan
    Song, Xiaoqian
    Wang, Songbai
    Zhou, Jiang
    ANNALS OF FUNCTIONAL ANALYSIS, 2025, 16 (01)
  • [28] Weighted criteria for generalized fractional maximal functions and potentials in Lebesgue spaces with variable exponent
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (09) : 609 - 628
  • [29] Iterated maximal functions in variable exponent Lebesgue spaces
    Harjulehto, Petteri
    Hasto, Peter
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2011, 135 (3-4) : 381 - 399
  • [30] ASSOCIATE SPACES OF LOGARITHMIC INTERPOLATION SPACES AND GENERALIZED LORENTZ-ZYGMUND SPACES
    Besoy, Blanca F.
    Cobos, Fernando
    Fernandez-Cabrera, Luz M.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 493 - 510