Norms of Maximal Functions Between Generalized and Classical Lorentz Spaces

被引:0
|
作者
Mustafayev, R. [1 ,2 ]
Bilgicli, N. [3 ]
Gorgulu, M.
机构
[1] Azerbaijan State Oil & Ind Univ, French Azerbaijani Univ UFAZ, Math Dept, Baku, Azerbaijan
[2] Karamanoglu Mehmetbey Univ, Dept Math, TR-70200 Karaman, Turkiye
[3] Kirikkale High Sch, Republ Turkey Minist Natl Educ, TR-71100 Kirikkale, Turkiye
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2023年 / 13卷 / 02期
关键词
generalized maximal functions; classical and generalized Lorentz spaces; iterated Hardy inequalities involving suprema; weights; REAL INTERPOLATION; LEBESGUE SPACES; BOUNDEDNESS; EMBEDDINGS; OPERATORS; REARRANGEMENT; INEQUALITIES;
D O I
10.59849/2218-6816.2023.2.51
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to find the norm of the generalized maximal operator M.,.a(b), defined for all measurable functions f on R-n, with 0 < alpha < infinity and functions b, phi : (0, infinity) -> (0, infinity), by M(phi, Lambda alpha(b))f(x) := sup (Q(sic)x) ||f chi Q||Lambda(alpha)(b)/phi(|Q|), x is an element of R-n, from generalized Lorentz spaces G Gamma(p, m, v) into classical Lorentz spaces Lambda(q)(w). In order to achieve the goal, we reduce the problem to the solution of the inequality (integral(infinity)(0) [T(u,b)f *(y)](q) w(y) dy)(1/q) <= C (integral(infinity)(0) (integral(x)(0) [f *(s)]p ds) (m/p) v(x) dx)(1/m) where w and v are weight functions on (0,infinity). Here f* is the non-increasing rearrangement of a measurable function f defined on R-n and T-u,T- b is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function g on (0,infinity) by (T(u,b)g)(t) := sup(tau is an element of[t,infinity)) u(tau)/B(tau) integral(tau)(0) g(s)b(s) ds, t is an element of(0,infinity), where u and b are weight functions on (0,infinity) such that u is continuous on (0,infinity) and the function B(t) := integral(t)(0) b(s) ds satisfies 0 < B(t) < infinity for every t is an element of (0,infinity).
引用
收藏
页码:51 / 99
页数:49
相关论文
共 50 条
  • [1] GENERALIZED FRACTIONAL MAXIMAL FUNCTIONS IN LORENTZ SPACES A
    Mustafayev, R. Ch
    Bilgicli, N.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03): : 827 - 851
  • [2] SHARP CONSTANTS BETWEEN EQUIVALENT NORMS IN WEIGHTED LORENTZ SPACES
    Barza, Sorina
    Soria, Javier
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 88 (01) : 19 - 27
  • [3] ON THE BOUNDEDNESS OF A GENERALIZED FRACTIONAL-MAXIMAL OPERATOR IN LORENTZ SPACES
    Abek, A. N.
    Turgumbayev, M. Zh.
    Suleimenova, Z. R.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 118 (02): : 3 - 10
  • [4] GENERALIZED MAXIMAL FUNCTIONS AND RELATED OPERATORS ON WEIGHTED MUSIELAK-ORLICZ SPACES
    Bernardis, Ana
    Dalmasso, Estefania
    Pradolini, Gladis
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) : 23 - 50
  • [5] Are generalized Lorentz "spaces" really spaces?
    Cwikel, M
    Kaminska, A
    Maligranda, L
    Pick, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (12) : 3615 - 3625
  • [6] Equivalence of norms of Riesz potential and fractional maximal function in generalized Morrey spaces
    Gogatishvili, Amiran
    Mustafayev, Rza
    COLLECTANEA MATHEMATICA, 2012, 63 (01) : 11 - 28
  • [7] On grand Lorentz spaces and the maximal operator
    Jain, Pankaj
    Kumari, Santosh
    GEORGIAN MATHEMATICAL JOURNAL, 2012, 19 (02) : 235 - 246
  • [8] Weighted Lorentz spaces: Sharp mixed Ap - A∞ estimate for maximal functions
    Accomazzo, Natalia
    Duoandikoetxea, Javier
    Nieraeth, Zoe
    Ombrosi, Sheldy
    Perez, Carlos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (02)
  • [9] LOCAL SHARP MAXIMAL FUNCTIONS, GEOMETRICAL MAXIMAL FUNCTIONS AND ROUGH MAXIMAL FUNCTIONS ON LOCAL MORREY SPACES WITH VARIABLE EXPONENTS
    Yee, Tat-Leung
    Cheung, Ka Luen
    Ho, Kwok-Pun
    Suen, Chun Kit
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (04): : 1509 - 1528
  • [10] Generalized grand Lorentz martingale spaces
    Hao, Zhiwei
    Li, Libo
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (3-4): : 323 - 346