ALMOST EVERYWHERE NONUNIQUENESS OF INTEGRAL CURVES FOR DIVERGENCE-FREE SOBOLEV VECTOR FIELDS

被引:5
|
作者
Pitcho, Jules [1 ]
Sorella, Massimo [2 ]
机构
[1] UMPA, ENS Lyon, 46 Allee Italie, F-69364 Lyon, France
[2] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
关键词
Sobolev vector fields; generalized flows; continuity equation; ODE; integral curves; TRANSPORT-EQUATION; CAUCHY-PROBLEM;
D O I
10.1137/22M1487187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct divergence-free Sobolev vector fields in C([0,1];W-1,W-r(T-d;Rd)) with r < d and d\geq 2 which simultaneously admit any finite number of distinct positive solutions to the continuity equation. These vector fields are then shown to have at least as many integral curves starting from 2d-a.e. point of Td as the number of distinct positive solutions to the continuity equa-tion these vector fields admit. This work uses convex integration techniques to study nonuniqueness for positive solutions of the continuity equation. Nonuniqueness for integral curves is then inferred from Ambrosio's superposition principle.
引用
收藏
页码:4640 / 4663
页数:24
相关论文
共 50 条
  • [1] Divergence-free vector fields in ℝ2
    Alberti G.
    Bianchini S.
    Crippa G.
    Journal of Mathematical Sciences, 2010, 170 (3) : 283 - 293
  • [2] HOMOTOPY TO DIVERGENCE-FREE VECTOR FIELDS
    ASIMOV, D
    TOPOLOGY, 1976, 15 (04) : 349 - 352
  • [3] REPRESENTATION OF DIVERGENCE-FREE VECTOR FIELDS
    Barbarosie, Cristian
    QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (02) : 309 - 316
  • [4] A note on divergence-free vector fields
    Padmavati, B. Sri
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2008, 39 (04): : 317 - 321
  • [5] A note on free divergence-free vector fields
    Ito, Hyuga
    Miyagawa, Akihiro
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [6] Divergence-free vector fields with orbital shadowing
    Manseob Lee
    Advances in Difference Equations, 2013
  • [7] STREAM FUNCTIONS FOR DIVERGENCE-FREE VECTOR FIELDS
    Kelliher, James P.
    QUARTERLY OF APPLIED MATHEMATICS, 2021, 79 (01) : 163 - 174
  • [8] Divergence-free vector fields with inverse shadowing
    Keonhee Lee
    Manseob Lee
    Advances in Difference Equations, 2013
  • [9] ALMOST INVARIANT-MANIFOLDS FOR DIVERGENCE-FREE FIELDS
    DEWAR, RL
    HUDSON, SR
    PRICE, PF
    PHYSICS LETTERS A, 1994, 194 (1-2) : 49 - 56
  • [10] Stability properties of divergence-free vector fields
    Ferreira, Celia
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (02): : 223 - 238