Deep Learning for Glaucoma Detection: R-CNN ResNet-50 and Image Segmentation

被引:8
作者
Puchaicela-Lozano, Marlene S. [1 ]
Zhinin-Vera, Luis [2 ,3 ]
Andrade-Reyes, Ana J. [1 ]
Baque-Arteaga, Dayanna M. [1 ]
Cadena-Morejon, Carolina [2 ]
Tirado-Espin, Andres [2 ]
Ramirez-Cando, Lenin [1 ]
Almeida-Galarraga, Diego [1 ]
Cruz-Varela, Jonathan [1 ]
Villalba Meneses, Fernando [1 ]
机构
[1] Yachay Tech Univ, Sch Biol Sci & Engn, Urcuqui, Ecuador
[2] Yachay Tech Univ, Sch Math & Computat Sci, Urcuqui, Ecuador
[3] Univ Castilla La Mancha, LoUISE Res Grp, I3A, Albacete, Spain
关键词
glaucoma; convolutional neural networks; fundus images; CUP SEGMENTATION; OPTIC DISC; CLASSIFICATION; NETWORK;
D O I
10.12720/jait.14.6.1186-1197
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Glaucoma is a leading cause of irreversible blindness worldwide, affecting millions of people. Early diagnosis is essential to reduce visual loss, and various techniques are used for glaucoma detection. In this work, a hybrid method for glaucoma fundus image localization using pre-trained Region-based Convolutional Neural Networks (R-CNN) ResNet-50 and cup-to-disk area segmentation is proposed. The ACRIMA and ORIGA databases were used to evaluate the proposed approach. The results showed an average confidence of 0.879 for the ResNet-50 model, indicating it as a reliable alternative for glaucoma detection. Moreover, the cup-to-disc ratio was calculated using Gradient-color-based optic disc segmentation, coinciding with the ResNet-50 results in 80% of cases, having an average confidence score of 0.84. The approach suggested in this study can determine if glaucoma is present or not, with a final accuracy of 95% with specific criteria provided to guide the specialist for an accurate diagnosis. In summary, the proposed model provides a reliable and secure method for diagnosing glaucoma using fundus images.
引用
收藏
页码:1186 / 1197
页数:12
相关论文
共 80 条
[61]  
Sivaswamy J, 2014, I S BIOMED IMAGING, P53, DOI 10.1109/ISBI.2014.6867807
[62]  
Song Yunhe, 2022, Am J Ophthalmol Case Rep, V25, P101366, DOI 10.1016/j.ajoc.2022.101366
[63]   A machine learning model for supporting symptom-based referral and diagnosis of bronchitis and pneumonia in limited resource settings [J].
Stokes, Katy ;
Castaldo, Rossana ;
Franzese, Monica ;
Salvatore, Marco ;
Fico, Giuseppe ;
Pokvic, Lejla Gurbeta ;
Badnjevic, Almir ;
Pecchia, Leandro .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (04) :1288-1302
[64]  
Subbiah Sujata, 2007, Indian Journal of Ophthalmology, V55, P283
[65]  
Sujithra S. B., 2018, Int. J. Eng. Res. Gen. Sci., V6, P83
[66]  
Sunanthini V., 2022, J. Healthc. Eng., V2022
[67]  
Suquilanda-Pesantez Jefferson Daniel, 2022, F1000Res, V11, P164, DOI 10.12688/f1000research.107925.1
[68]   Clustering Based Approach for Segmentation of Optic Cup and Optic Disc for Detection of Glaucoma [J].
Thakur, Niharika ;
Juneja, Mamta .
CURRENT MEDICAL IMAGING REVIEWS, 2017, 13 (01) :99-105
[69]  
Turgut B., 2017, US OPHTHALMIC REV, V10, P104, DOI [10.17925/USOR.2017.10.02.104, DOI 10.17925/USOR.2017.10.02.104]
[70]  
Vasquez A. M., 2018, 90% of glaucoma cases are not diagnosed