Approximation of sequential fractional systems of Liouville-Caputo type by discrete delta difference operators

被引:10
作者
Almusawa, Musawa Yahya [1 ]
Mohammed, Pshtiwan Othman [2 ]
机构
[1] Jazan Univ, Fac Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] Univ Sulaimani, Coll Educ, Dept Biol, Sulaimani 46001, Kurdistan Regio, Iraq
关键词
Discrete fractional calculus; Liouville-Caputo fractio n a l operator s; Sequential fractional systems; CALCULUS;
D O I
10.1016/j.chaos.2023.114098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the Liouville-Caputo fractional difference method for the numerical evolution of the sequential differential equation of fractional order. Meanwhile, some binomial coefficients are considered in discrete fractional calculus to find and determine the corresponding sequence of continuous fractional order equations. Finally, a standard numerical test is offered in detai l to demonstrate the validity of the main theorem.
引用
收藏
页数:6
相关论文
共 35 条
[1]   Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
CHAOS SOLITONS & FRACTALS, 2017, 102 :106-110
[2]   On Delta and Nabla Caputo Fractional Differences and Dual Identities [J].
Abdeljawad, Thabet .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
[3]  
[Anonymous], 1999, MATH SCI ENG
[4]  
Atici F.M., 2007, Int. J. Difference Equ., V2, P165
[5]   A New Approach for Modeling with Discrete Fractional Equations [J].
Atici, Ferhan M. ;
Atici, Mustafa ;
Belcher, Michael ;
Marshall, Dana .
FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) :313-324
[6]   ANALYSIS OF DISCRETE FRACTIONAL OPERATORS [J].
Atici, Ferhan M. ;
Uyanik, Meltem .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2015, 9 (01) :139-149
[7]   Existence results for fractional neutral integro-differential equations with state-dependent delay [J].
Carvalho dos Santos, Jose Paulo ;
Arjunan, M. Mallika ;
Cuevas, Claudio .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1275-1283
[8]   Ulam-Hyers stability of Caputo fractional difference equations [J].
Chen, Churong ;
Bohner, Martin ;
Jia, Baoguo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) :7461-7470
[9]   On state-dependent delay partial neutral functional integro-differential equations [J].
dos Santos, Jose P. C. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) :1637-1644
[10]   Caputo delta weakly fractional difference equations [J].
Feckan, Michal ;
Pospisil, Michal ;
Danca, Marius-F. ;
Wang, JinRong .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) :2222-2240