Approximation of sequential fractional systems of Liouville-Caputo type by discrete delta difference operators

被引:10
作者
Almusawa, Musawa Yahya [1 ]
Mohammed, Pshtiwan Othman [2 ]
机构
[1] Jazan Univ, Fac Sci, Dept Math, Jazan 45142, Saudi Arabia
[2] Univ Sulaimani, Coll Educ, Dept Biol, Sulaimani 46001, Kurdistan Regio, Iraq
关键词
Discrete fractional calculus; Liouville-Caputo fractio n a l operator s; Sequential fractional systems; CALCULUS;
D O I
10.1016/j.chaos.2023.114098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present the Liouville-Caputo fractional difference method for the numerical evolution of the sequential differential equation of fractional order. Meanwhile, some binomial coefficients are considered in discrete fractional calculus to find and determine the corresponding sequence of continuous fractional order equations. Finally, a standard numerical test is offered in detai l to demonstrate the validity of the main theorem.
引用
收藏
页数:6
相关论文
共 35 条
  • [1] Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel
    Abdeljawad, Thabet
    Baleanu, Dumitru
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 106 - 110
  • [2] On Delta and Nabla Caputo Fractional Differences and Dual Identities
    Abdeljawad, Thabet
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [3] Atici F.M., 2007, INT J DIFFERENCE EQU, V2, P165
  • [4] A New Approach for Modeling with Discrete Fractional Equations
    Atici, Ferhan M.
    Atici, Mustafa
    Belcher, Michael
    Marshall, Dana
    [J]. FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 313 - 324
  • [5] ANALYSIS OF DISCRETE FRACTIONAL OPERATORS
    Atici, Ferhan M.
    Uyanik, Meltem
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2015, 9 (01) : 139 - 149
  • [6] Existence results for fractional neutral integro-differential equations with state-dependent delay
    Carvalho dos Santos, Jose Paulo
    Arjunan, M. Mallika
    Cuevas, Claudio
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1275 - 1283
  • [7] Ulam-Hyers stability of Caputo fractional difference equations
    Chen, Churong
    Bohner, Martin
    Jia, Baoguo
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7461 - 7470
  • [8] On state-dependent delay partial neutral functional integro-differential equations
    dos Santos, Jose P. C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) : 1637 - 1644
  • [9] Caputo delta weakly fractional difference equations
    Feckan, Michal
    Pospisil, Michal
    Danca, Marius-F.
    Wang, JinRong
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2222 - 2240
  • [10] Girejko E., 2012, 2012 IEEE 4th International Conference on Nonlinear Science and Complexity (NSC), P137, DOI 10.1109/NSC.2012.6304743