Benzotriazole-Based D-p-A-Type Photovoltaic Polymers Break Through 17% Efficiency

被引:21
作者
Du, Mengzhen [1 ,2 ]
Tang, Ailing [2 ]
Yu, Jiagui [1 ,2 ]
Geng, Yanfang [2 ]
Wang, Zongtao [1 ,2 ]
Guo, Qiang [1 ]
Zhong, Yufei [3 ]
Lu, Shirong [4 ]
Zhou, Erjun [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[2] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[3] NingboTech Univ, Sch Mat Sci & Engn, Ningbo 315100, Peoples R China
[4] Taizhou Univ, Dept Mat Sci & Technol, Taizhou 318000, Peoples R China
基金
中国国家自然科学基金;
关键词
benzotriazole; high mobility; molecular conformation; morphology; organic photovoltaics; ORGANIC SOLAR-CELLS; ACCEPTOR; DONOR;
D O I
10.1002/aenm.202302429
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Benzo[d][1,2,3]triazole (BTA) unit is one of the most classic electron-accepting units (A) to construct donor (D)-& pi;-A-type photovoltaic polymers. However, the highest power conversion efficiency (PCE) of organic photovoltaics (OPVs) based on BTA-containing polymers is restricted to 15-16%, lagging other promising polymers. Thus, investigating the structure-performance relationship and breaking the efficiency bottleneck of BTA-based polymers is challenging but critical. Herein, the effects of fusing two thiophene rings at D (PE52), & pi; (PE4), and A (PE39) units of a classic D-& pi;-A-type BTA-containing polymer J52-Cl, respectively, on the backbone conformation, crystallinity, molecular stacking, and photovoltaic performance are systematically investigated. When blended with a BTA-containing non-fullerene acceptor (NFA), Y18, all three polymers with extending conjugated backbones can decrease the energy loss of photovoltaic devices. Notably, PE4, with a linear backbone conformation, realizes the champion PCE of 17.08%, with a short-circuit current density (JSC) of 26.83 mA cm-2, a large breakthrough for BTA-based photovoltaic polymers. What's more, the photovoltaic device based on PE4:Y18 combination fabricated by a non-halogenated solvent of o-xylene also displays an excellent PCE of 16.87%. The results indicate that fusing thiophene rings to BTA-polymers, especially at & pi;-bridge, is a simple and effective method to improve the photovoltaic performance via modulating the molecular conformation and crystallinity. Thiophene rings are fused on the donor (D), & pi;, and acceptor (A) units, respectively, to extend the conjugation length and fine-tune molecular conformation of the classic D-& pi;-A-type benzotriazole (BTA)-containing polymer. Thiophene fusion on the & pi;-bridge produces the linear backbone and the highest carrier mobilities, contributing to a champion power conversion efficiency above 17%, a breakthrough for BTA-based photovoltaic polymers.image
引用
收藏
页数:10
相关论文
共 54 条
[41]   Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core [J].
Yuan, Jun ;
Zhang, Yunqiang ;
Zhou, Liuyang ;
Zhang, Guichuan ;
Yip, Hin-Lap ;
Lau, Tsz-Ki ;
Lu, Xinhui ;
Zhu, Can ;
Peng, Hongjian ;
Johnson, Paul A. ;
Leclerc, Mario ;
Cao, Yong ;
Ulanski, Jacek ;
Li, Yongfang ;
Zou, Yingping .
JOULE, 2019, 3 (04) :1140-1151
[42]   Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics [J].
Zhan, Lingling ;
Li, Shuixing ;
Li, Yaokai ;
Sun, Rui ;
Min, Jie ;
Bi, Zhaozhao ;
Ma, Wei ;
Chen, Zeng ;
Zhou, Guangqing ;
Zhu, Haiming ;
Shi, Minmin ;
Zuo, Lijian ;
Chen, Hongzheng .
JOULE, 2022, 6 (03) :662-675
[43]   Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18% [J].
Zhan, Lingling ;
Li, Shuixing ;
Xia, Xinxin ;
Li, Yaokai ;
Lu, Xinhui ;
Zuo, Lijian ;
Shi, Minmin ;
Chen, Hongzheng .
ADVANCED MATERIALS, 2021, 33 (12)
[44]   Two Better Compatible and Complementary Light Absorption Polymer Donors Contributing Synergistically to High Efficiency and Better Thermally Stable Ternary Organic Solar Cells [J].
Zhang, Han ;
Wang, Hong-En ;
Zhu, Ting ;
Liu, Zhiyong ;
Chen, Lan .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) :5026-5035
[45]   Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors [J].
Zhang, Jianquan ;
Tan, Huei Shuan ;
Guo, Xugang ;
Facchetti, Antonio ;
Yan, He .
NATURE ENERGY, 2018, 3 (09) :720-731
[46]   Over 15.5% efficiency organic solar cells with triple sidechain engineered ITIC [J].
Zhang, Zhuohan ;
Guang, Shun ;
Yu, Jiangsheng ;
Wang, Hongtao ;
Cao, Jinru ;
Du, Fuqiang ;
Wang, Xinlei ;
Tang, Weihua .
SCIENCE BULLETIN, 2020, 65 (18) :1533-1536
[47]   Environmentally Friendly Solvent-Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Blade-Coating Method [J].
Zhao, Wenchao ;
Zhang, Shaoqing ;
Zhang, Yun ;
Li, Sunsun ;
Liu, Xiaoyu ;
He, Chang ;
Zheng, Zhong ;
Hou, Jianhui .
ADVANCED MATERIALS, 2018, 30 (04)
[48]   Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells [J].
Zhao, Wenchao ;
Li, Sunsun ;
Yao, Huifeng ;
Zhang, Shaoqing ;
Zhang, Yun ;
Yang, Bei ;
Hou, Jianhui .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (21) :7148-7151
[49]   Tandem Organic Solar Cell with 20.2% Efficiency [J].
Zheng, Zhong ;
Wang, Jianqiu ;
Bi, Pengqing ;
Ren, Junzhen ;
Wang, Yafei ;
Yang, Yi ;
Liu, Xiaoyu ;
Zhang, Shaoqing ;
Hou, Jianhui .
JOULE, 2022, 6 (01) :171-184
[50]   A linear 2D-conjugated polymer based on 4,8-bis(4-chloro-5-tripropylsilyl-thiophen-2-yl)benzo [1,2-b:4,5-b′]dithiophene (BDT-T-SiCl) for low voltage loss organic photovoltaics [J].
Zhou, Jialing ;
Lei, Peng ;
Geng, Yanfang ;
He, Zehua ;
Li, Xianda ;
Zeng, Qingdao ;
Tang, Ailing ;
Zhou, Erjun .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (18) :9869-9877