Benzotriazole-Based D-p-A-Type Photovoltaic Polymers Break Through 17% Efficiency

被引:21
作者
Du, Mengzhen [1 ,2 ]
Tang, Ailing [2 ]
Yu, Jiagui [1 ,2 ]
Geng, Yanfang [2 ]
Wang, Zongtao [1 ,2 ]
Guo, Qiang [1 ]
Zhong, Yufei [3 ]
Lu, Shirong [4 ]
Zhou, Erjun [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[2] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[3] NingboTech Univ, Sch Mat Sci & Engn, Ningbo 315100, Peoples R China
[4] Taizhou Univ, Dept Mat Sci & Technol, Taizhou 318000, Peoples R China
基金
中国国家自然科学基金;
关键词
benzotriazole; high mobility; molecular conformation; morphology; organic photovoltaics; ORGANIC SOLAR-CELLS; ACCEPTOR; DONOR;
D O I
10.1002/aenm.202302429
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Benzo[d][1,2,3]triazole (BTA) unit is one of the most classic electron-accepting units (A) to construct donor (D)-& pi;-A-type photovoltaic polymers. However, the highest power conversion efficiency (PCE) of organic photovoltaics (OPVs) based on BTA-containing polymers is restricted to 15-16%, lagging other promising polymers. Thus, investigating the structure-performance relationship and breaking the efficiency bottleneck of BTA-based polymers is challenging but critical. Herein, the effects of fusing two thiophene rings at D (PE52), & pi; (PE4), and A (PE39) units of a classic D-& pi;-A-type BTA-containing polymer J52-Cl, respectively, on the backbone conformation, crystallinity, molecular stacking, and photovoltaic performance are systematically investigated. When blended with a BTA-containing non-fullerene acceptor (NFA), Y18, all three polymers with extending conjugated backbones can decrease the energy loss of photovoltaic devices. Notably, PE4, with a linear backbone conformation, realizes the champion PCE of 17.08%, with a short-circuit current density (JSC) of 26.83 mA cm-2, a large breakthrough for BTA-based photovoltaic polymers. What's more, the photovoltaic device based on PE4:Y18 combination fabricated by a non-halogenated solvent of o-xylene also displays an excellent PCE of 16.87%. The results indicate that fusing thiophene rings to BTA-polymers, especially at & pi;-bridge, is a simple and effective method to improve the photovoltaic performance via modulating the molecular conformation and crystallinity. Thiophene rings are fused on the donor (D), & pi;, and acceptor (A) units, respectively, to extend the conjugation length and fine-tune molecular conformation of the classic D-& pi;-A-type benzotriazole (BTA)-containing polymer. Thiophene fusion on the & pi;-bridge produces the linear backbone and the highest carrier mobilities, contributing to a champion power conversion efficiency above 17%, a breakthrough for BTA-based photovoltaic polymers.image
引用
收藏
页数:10
相关论文
共 54 条
[1]   Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency [J].
Bi, Pengqing ;
Zhang, Shaoqing ;
Chen, Zhihao ;
Xu, Ye ;
Cui, Yong ;
Zhang, Tao ;
Ren, Junzhen ;
Qin, Jinzhao ;
Hong, Ling ;
Hao, Xiaotao ;
Hou, Jianhui .
JOULE, 2021, 5 (09) :2408-2419
[2]   11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J].
Bin, Haijun ;
Gao, Liang ;
Zhang, Zhi-Guo ;
Yang, Yankang ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Chen, Shanshan ;
Xue, Lingwei ;
Yang, Changduk ;
Xiao, Min ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2016, 7
[3]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[4]   Selective fluorination on donor and acceptor for management of efficiency and energy loss in non-fullerene organic photovoltaics [J].
Chen, You ;
Lei, Peng ;
Geng, Yanfang ;
Meng, Ting ;
Li, Xiangyu ;
Zeng, Qingdao ;
Guo, Qing ;
Tang, Ailing ;
Zhong, Yufei ;
Zhou, Erjun .
SCIENCE CHINA-CHEMISTRY, 2023, 66 (04) :1190-1200
[5]   Realizing 19.05% Efficiency Polymer Solar Cells by Progressively Improving Charge Extraction and Suppressing Charge Recombination [J].
Chong, Kaien ;
Xu, Xiaopeng ;
Meng, Huifeng ;
Xue, Jingwei ;
Yu, Liyang ;
Ma, Wei ;
Peng, Qiang .
ADVANCED MATERIALS, 2022, 34 (13)
[6]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[7]   19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition [J].
Fu, Jiehao ;
Fong, Patrick W. K. ;
Liu, Heng ;
Huang, Chieh-Szu ;
Lu, Xinhui ;
Lu, Shirong ;
Abdelsamie, Maged ;
Kodalle, Tim ;
Sutter-Fella, Carolin M. ;
Yang, Yang ;
Li, Gang .
NATURE COMMUNICATIONS, 2023, 14 (01)
[8]   All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27% [J].
Gao, Liang ;
Zhang, Zhi-Guo ;
Xue, Lingwei ;
Min, Jie ;
Zhang, Jianqi ;
Wei, Zhixiang ;
Li, Yongfang .
ADVANCED MATERIALS, 2016, 28 (09) :1884-1890
[9]   Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells [J].
Gao, Mengyuan ;
Liang, Ziqi ;
Geng, Yanhou ;
Ye, Long .
CHEMICAL COMMUNICATIONS, 2020, 56 (83) :12463-12478
[10]   Efficient and moisture-resistant organic solar cells via simultaneously reducing the surface defects and hydrophilicity of an electron transport layer [J].
Gao, Xueman ;
Su, Zhenhuang ;
Qu, Shengchun ;
Zhang, Wenzhi ;
Gao, Yueyue ;
He, Shenghua ;
Wang, Zhijie ;
Shang, Luwen ;
Dong, Guohua ;
Yue, Gentian ;
Tan, Furui ;
Wang, Zhangguo .
JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (38) :13500-13508